精英家教网 > 初中数学 > 题目详情
精英家教网附加题:已知,如图,四边形ABCD中,AB=BC=1,CD=
3
,DA=1,且∠B=90°.试求:
(1)∠BAD的度数;
(2)四边形ABCD的面积(结果保留根号).
分析:(1)如图,连接AC,由于AB=BC=1,且∠B=90°根据勾股定理即可求出AC的长度,而CD=
3
,DA=1,利用勾股定理的逆定理即可证明△ACD是直角三角形,由此即可求出∠BAD的度数;
(2)首先把求四边形ABCD的面积分割为求△ABC和△ACD的面积,然后利用三角形的面积公式可以分别求出这两个三角形的面积,最后就可以求出四边形ABCD的面积.
解答:精英家教网解:(1)如图,连接AC,
∵AB=BC=1,且∠B=90°,
∴∠BAC=45°,AC=
AB2+BC2
=
2

而CD=
3
,DA=1,
∴CD2=AD2+AC2
∴△ACD是直角三角形,即∠DAC=90°,
∴∠BAD=∠BAC+∠DAC=135°;

(2)∵S四边形ABCD=S△ABC+S△ACD
而S△ABC=
1
2
AB×BC=
1
2

S△ACD=
1
2
AD×CD=
2
2

∴S四边形ABCD=S△ABC+S△ACD=
1
2
2
+1).
点评:此题考查了勾股定理及其逆定理、直角三角形的面积公式、以及利用割补法求不规则图形的面积,有一定的难度,对于学生的能力要求比较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=
kx
的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
已知:如图⊙O是以等腰三角形ABC的底边BC为直径的外接圆,BD平分∠ABC交⊙O于D,且BD与OA、精英家教网AC分别交于点E、F延长BA、CD交于G.
(1)试证明:BF=CG.
(2)线段CD与BF有什么数量关系?为什么?
(3)试比较线段CD与BE的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、附加题:已知:如图,a∥b,∠1=70°,则∠3的度数为
110
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、(附加题)已知:如图,a∥b,∠1=70°,则∠3的度数为
110
度.

查看答案和解析>>

同步练习册答案