精英家教网 > 初中数学 > 题目详情
20.小强同学对本校学生完成家庭作业的时间进行了随机抽样调查,并绘成如下不完整的三个统计图表.
各组频数、频率统计表
 组别 时间(小时) 频数(人) 频率
 A 0≤x≤0.5 20 0.2
 B 0.5<x≤115  a
 C 1<x≤1.5350.35 
 D x>1.5 30 0.3
 合计 b 1.0
(1)a=0.15,b=100,∠α=126,并将条形统计图补充完整.
(2)若该校有学生3200人,估计完成家庭作业时间超过1小时的人数.
(3)根据以上信息,请您给校长提一条合理的建议.

分析 (1)根据每天完成家庭作业的时间在0≤t<0.5的频数和频率,求出抽查的总人数b,再用每天完成家庭作业的时间在0.5≤t<1的频数除以总人数b的值,求出a,根据各组频率之和等于1求出C组所占百分比,再乘以360°,求出∠α即可;
(2)利用样本估计总体的思想,用该校学生总数乘以样本中完成家庭作业时间超过1小时的学生所占百分比,计算即可;
(3)根据题目信息,可提建议:适当减少作业量.

解答 解:(1)抽查的总的人数b=20÷0.2=100(人),
a=15÷100=0.15,
∠α=360°×(1-0.2-0.15-0.3)=360°×0.35=126°.
填表如下:

组别 时间(小时) 频数(人) 频率
 A 0≤x≤0.5 20 0.2
 B 0.5<x≤115  a
 C 1<x≤1.5350.35 
 D x>1.5 30 0.3
 合计 b 1.0
故答案为:0.15,100,126;

(2)3200×(0.35+0.3)=2080(人);

(3)适当布置家庭作业,减少作业量,使一半左右的学生在1小时内完成作业.

点评 本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.阅读下列材料,并解答相应的问题:

(1)下面是两个旋转对称图形,其中,甲图是由正三角形ACE绕其对称中心旋转180°后得到的△DFB与△ACE构成的;乙图是四个全等的正三角形拼成的(拼接时不重叠且没有空隙).点O分别是它们的旋转对称中心.其旋转角α的最小值分别为:甲:60°,乙:120°;

(2)下面的网格都是由边长为1的正三角形组成的,请以给出的图案为基本图形(其顶点均在格点上),在图1,图2中再添加若干个基本图形,使添加的图形与基本图形组成一个新图案,要求:
①图1中组成的新图案是中心对称图形;
②图2中组成的新图案只是旋转对称图形,不是中心对称图形;
③两图中新图案的顶点都在格点上,并且给添加的基本图案涂上阴影(建议用一组平行线段表示阴影).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.操作题
如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)作出△ABC关于坐标原点O成中心对称的△A1B1C1
(2)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(2,1)、B2(4,0),C2(3,-2),则旋转中心坐标为(0,2).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象,下列说法:
①买2件时甲、乙两家售价一样;
②买1件时选乙家的产品合算;
③买3件时选甲家的产品合算;
④买1件时,售价约为3元.
其中正确的说法是(  )
A.①②B.②③C.①②④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各数中,是方程x2=4x-3的解的是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在△ABC中,D、E、F分别为BC、AB、AC上的点.
(1)如图1,若EF∥BC、DF∥AB,连CE、AD分别交DF、EF于N、M,且E为AB的中点,求证:EM=MF;
(2)如图2,在(1)中,若E不是AB的中点,请写出与MN平行的直线,并证明;
(3)若BD=DC,∠B=90°,且AE:AB:BC=1:3:2$\sqrt{3}$,AD与CE相交于点Q,直接写出tan∠CQD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.
(1)四边形AFBD一定是平行四边形;(不需证明)
(2)将下列命题填写完整,并使命题成立(图中不再添加其它的点和线):
①当△ABC满足条件AB=AC时,四边形AFBD是矩形形(不需证明);
②当△ABC满足条件AB=AC,∠BAC=90°时,四边形AFBD是正方形;并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.?ABCD中,对角线AC、BD相交于点O,则下列结论中错误的是(  )
A.AB=CDB.AC=BDC.AD=CBD.AO=OC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=6,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点,得△A3B3C3,…,则△AnBnCn的周长=$\frac{17}{{2}^{n-1}}$.

查看答案和解析>>

同步练习册答案