【题目】如图,射线上有三点、、,满足,,,点从点出发,沿方向以的速度匀速运动,点从点出发在线段上向点匀速运动,两点同时出发,当点运动到点时,点、停止运动.
(1)若点运动速度为,经过多长时间、两点相遇?
(2)当时,点运动到的位置恰好是线段的中点,求点的运动速度;
(3)设运动时间为,当点运动到线段上时,分别取和的中点、,则____________.
【答案】(1)经过,、两点相遇(2)答案不唯一,具体见解析(3)
【解析】
(1)设经过t秒时间P、Q两点相遇,根据OP+CQ=OA+AB+AC列出方程即可解决问题;
(2)分两种情形求解即可;
(3)用t表示AP、EF的长,代入化简即可解决问题;
(1)设运动时间为,则,;所以经过,、两点相遇
(2)当点在线段上时,如下图,
AP+PB=60,
∴AP=40,OP=50,
∴P用时50s,
∵Q是OB中点,
∴CQ=50,
点的运动速度为;
当点在线段的延长线上时,如下图,
AP=2PB,
∴AP=120,OP=140,
∴P用时140s,
∵Q是OB中点,
∴CQ=50,
点的运动速度为;
(3)如下图,
由题可知,OC=90,
AP=x-20,
EF=OF-OE=OF-OP=50-x,
∴90-(x-20)-2(50-x)=10
科目:初中数学 来源: 题型:
【题目】如图7所示,点、、在轴上,且,分别过点、、作轴的平行线,与反比例函数的图象分别交于点、、,分别过点 作轴的平行线,分别与轴交于点 ,连接 ,那么图中阴影部分的面积之和为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,由6相同的小正方体组合成的简单几何体.
(1)请在方格纸中分别画出几何体的主视图、左视图和俯视图;
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加 个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC,∠ACB=90°,AC=BC,分别过A、B作直线的垂线,垂足分别为M、N.
(1)求证:△AMC≌△CNB;
(2)若AM=3,BN=5,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线过点, . 为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
(1)求直线AB的解析式和抛物线的解析式;
(2)如果点P是MN的中点,那么求此时点N的坐标;
(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有三点A、B、C,请根据图回答下列问题:
(1)若将点B向左平移3个单位后,则A、B、C这三个点所表示的数谁最小?是多少?
(2)若将点A向右平移4个单位后,则A、B、C这三个点所表示的数谁最大?最大的数比最小的数大多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:
甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形. | 乙:分别作与的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形. |
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误B.甲错误,乙正确
C.甲、乙均正确D.甲、乙均错误
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋中装有相同的三个小球,其上面分别标注
数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回
袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果;
(2)求点M在直线y=x上的概率;
(3)求点M的横坐标与纵坐标之和是偶数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com