精英家教网 > 初中数学 > 题目详情
16、如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:OB=OC.
分析:首先角平分线的性质得到OD=OE,然后利用其他已知条件可以证明△BOD≌△COE,从而不难得到结论.
解答:证明:∵CD⊥AB,BE⊥AC,AO平分∠BAC,
∴OD=OE,∠BDO=∠CEO=90°.
∵∠BOD=∠COE,
∴△BOD≌△COE.
∴OB=OC.
点评:此题主要考查了角平分线的性质,利用它构造全等三角形,然后根据全等三角形的性质与判定解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE与CD交于点O,且BD=CE.
求证:AO平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.那么OB与OC相等吗?谈谈你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.
(1)猜想OB与OC的数量关系,并说明理由.
(2)若∠BAC=60°,问△ADC经过怎样的变换能与△AEB重合?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,CD⊥AB于点D,EF⊥AB于点F,∠DGC=105°,∠BCG=75°,求∠1+∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.
(1)求证:△ADO≌△AEO;
(2)猜想OB与OC的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案