精英家教网 > 初中数学 > 题目详情

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

【答案】
(1)解:因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以

解得

所以一次函数解析式为y=x2+2x﹣3


(2)解:∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),

∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,

此时PA+PD=PA+PC=AC= = =3


(3)解:设点P坐标(m,m2+2m﹣3),

令y=0,x2+2x﹣3=0,

x=﹣3或1,

∴点B坐标(1,0),

∴AB=4

∵SPAB=6,

4|m2+2m﹣3|=6,

∴m2+2m﹣6=0,m2+2m=0,

∴m=0或﹣2或1+ 或1﹣

∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+ ,3)或(1﹣ ,3).


【解析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.,以及对轴对称-最短路线问题的理解,了解已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列方程中解为的方程是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0),B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.

(1)求此抛物线的解析式;
(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平行四边形ABCD中,AB=6,BC=10,BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FEDC的延长线相交于点G,

(1)如图1,当AEBC时,求线段BE、CG的长度.

(2)如图2,点E在线段BC上运动时,连接DE,DF,BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.

(3)如图2,设BE=x,DEF的面积为y,试求出y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ODx轴所夹的锐角为30°,OA的长为2,A1A2B1A2A3B2A3A4B3AnAn+1Bn均为等边三边形,点A1、A2、A3…An1x轴正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点B2的坐标为_____,点Bn的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(k﹣1)x2 x+ =0有实数根,则k的取值范围是(
A.k为任意实数
B.k≠1
C.k≥0
D.k≥0且k≠1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为﹣3,④当x<0时,y>0,⑤当0<x1<x2<2时,y1>y2 , ⑥对称轴是直线x=2.你认为其中正确的个数为(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县某商场计划购进甲、乙两种商品共80件,这两种商品的进价、售价如表所示:

进价(元/件)

售价(元/件)

甲种商品

15

20

乙种商品

25

35

设其中甲种商品购进x件,售完此两种商品总利润为y元.

(1)写出y与x的函数关系式.

(2)该商场计划最多投入1500元用于购进这两种商品共80件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?

查看答案和解析>>

同步练习册答案