精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为4,点P是⊙O外的一点,PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时,PA的长度为(
A.10
B.
C.11
D.

【答案】B
【解析】解:如图所示.连接OA、OC(C为切点),过点O作OB⊥AP.
设AB的长为x,在Rt△AOB中,OB2=OA2﹣AB2=16﹣x2
∵l与圆相切,
∴OC⊥l.
∵∠OBD=∠OCD=∠CDB=90°,
∴四边形BOCD为矩形.
∴BD=OC=4.
∵直线l垂直平分PA,
∴PD=BD+AB=4+x.
∴PB=8+x.
在Rt△OBP中,OP2=OB2+PB2 , 即16﹣x2+(8+x)2=102 , 解得x=
PA=2AD=2× =
故选:B.
连接OA、OC(C为切点),过点O作OB⊥AP.根据题意可知四边形BOCD为矩形,从而可知:BP=8+x,设AB的长为x,在Rt△AOB和Rt△OBP中,由勾股定理列出关于x的方程解得x的长,从而可计算出PA的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为 , 则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知反比例函数y= 的图象与一次函数y=ax+b的图象交于两点M(4,m)和N(﹣2,﹣8),一次函数y=ax+b与x轴交于点A,与y轴交于点B.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程时,配方正确的是(
A.方程x2﹣6x﹣5=0,可化为(x﹣3)2=4
B.方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015
C.方程a2+8a+9=0,可化为(a+4)2=25
D.方程2x2﹣6x﹣7=0,可化为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,ACE,F两点,再分别以E,F为圆心,以大于EF长为半径作圆弧,两条弧交于点G,作射线AGCD于点H,若∠C=120°,则∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ACB中,ACB=90゜,CDAB于D.

(1)求证:ACD=B;

(2)若AF平分CAB分别交CD、BC于E、F,求证:CEF=CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为3cm,圆心角为60°的扇形纸片.AOB在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长 cm(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF

查看答案和解析>>

同步练习册答案