精英家教网 > 初中数学 > 题目详情

【题目】已知点F是等边△ABC的边BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与等边△ABC在BC的同侧,且CD∥AB,连结BE.

(1)如图①,若AB=10,EF=8,请计算△BEF的面积;
(2)如图②,若点G是BE的中点,连接AG、DG、AD.试探究AG与DG的位置和数量关系,并说明理由.

【答案】
(1)

解:如图1,

∵等边△ABC,

∴BC=AB=10,∠ABC=60°,

∵AB∥CD,

菱形DCFE中,DC∥EF,

∴AB∥EF,

∴∠EFH=∠ABC=60°,

∵EH⊥CF

∴∠FEH=30°

∴FH=

∴EH= =4

∵菱形CFED,EF=8,

∴CF=EF=8,

∴BF=BC+EF=18,


(2)

解:AG⊥GD,AG= DG

理由如下:

如图2,延长DG与BC交于M,连接AM,

∵四边形CDEF是菱形,

∴DE=DC,DE∥CF,

∴∠GBM=∠GED,∠GMB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中,

∴△BGM≌△EGD(AAS),

∴BM=ED=CD,MG=DG,

∵等边△ABC中,

∴∠ABC=∠ACB=60°,

又∵AB∥CD

∴∠DCF=∠ABC=60°,

∴∠ACD=180°﹣(∠ACB+∠DCF)=60°,

∴∠ABC=∠ACD,

在△ABH和△ACD中,

∴△ABM≌△ACD(SAS),

∴∠BAM=∠CAD,AM=AD,

∴∠MAD=∠BAC=60°

∵AD=AM,MG=DG,

∴△MAD是等边三角形,

∴AG⊥MD,∠MAG=∠DAG=30°,

∴AG:DG=

∴AG= DG.


【解析】(1)如图1,作高线EH,利用平行线的性质得:∠FEH=30°,则FH= ,利用勾股定理求EH的长,利用三角形面积公式求面积即可;(2)如图2,作辅助线,构建全等三角形,先证△BGM≌△EGD,则BM=ED=CD,MG=DG,再证明△ABM≌△ACD,则∠BAM=∠CAD,AM=AD,所以△MAD是等边三角形,由三线合一可得结论.
【考点精析】根据题目的已知条件,利用平行线的性质和勾股定理的概念的相关知识可以得到问题的答案,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一个点从Aa1a2)出发沿图中路线依次经过Ba3a4),Ca5a6),Da7a8),,按此一直运动下去,则a2015+a2016的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,2)、B(a,﹣4)是一次函数y=kx+b的图象与反比例函数y= 的图象的两个交点;
(1)求一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解方程:x23x10

2)解方程:xx1)﹣6x1)=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在Rt△ABC中,∠C=90°,AB =10, BC: AC=3:4, 则BC=_______, AC=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多边形的内角和为1800°,则这个多边形的边数为(

A. 12 B. 11 C. 10 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABC=ACBADBDCD分别平分ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①ADBC②∠ACB=2ADB③∠ADC+ABD=90°④∠BDC=BAC.其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中,有两个不相等的实数根的是(  )

A.x2x10B.x2+x+10C.x2+10D.x2+2x+10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过点C的切线,垂足为点DAB的延长线交切线CD于点E

(1)求证:AC平分∠DAB

(2)若AB =4,BOE的中点,CFAB,垂足为点F,求CF的长.

查看答案和解析>>

同步练习册答案