精英家教网 > 初中数学 > 题目详情
已知:三角形纸片ABC中,∠C=90°,AB=12,BC=6,B′是边AC上一点.将三精英家教网角形纸片折叠,使点B与点B′重合,折痕与BC、AB分别相交于E、F.
(1)设BE=x,B′C=y,试建立y关于x的函数关系式,并直接写出x的取值范围;
(2)当△AFB′是直角三角形时,求出x的值.
分析:(1)根据折叠的性质得BE=B′E=x,在Rt△EB'C中利用勾股定理得y2+(6-x)2=x2,整理后即可得到y关于x的函数关系式;
(2)根据含30度的直角三角形三边的关系得∠A=30°,由折叠的性质得到∠FB'E=∠B=60°,然后讨论:①当∠AFB'=90°时,则∠AB′F=60°,易得∠B'EC=30°,
则B′C=
1
2
B′E,即y=
1
2
x,把y代入得到关于x的方程,解方程求出满足条件的x的值;②当∠AB'F=90°时,则∠EB'C=30°,即有EC=
1
2
EB′,即6-x=
1
2
x,解方程即可.
解答:解:(1)∵三角形纸片折叠,使点B与点B′重合,
∴BE=B′E,
∴B'E=x,CE=6-x,
在Rt△EB'C中,B'E2=CE2+B'C2,即y2+(6-x)2=x2
∴y=
12x-36
=2
3x-9
(3≤x≤6);

(2)∵∠C=90°,AB=12,BC=6,
∴∠A=30°,
∴∠FB'E=∠B=60°,
①当∠AFB'=90°时,则∠AB′F=60°,
∴∠EB'C=60°,
∴∠B'EC=30°,
∴B′C=
1
2
B′E,即y=
1
2
x,
∴2
3x-9
=
1
2
x,解得x=24±12
3

∵3≤x≤6,
∴x=24-12
3

②当∠AB'F=90°时,则∠EB'C=30°,
∴EC=
1
2
EB′,即6-x=
1
2
x,解得x=4,
所以x=4或24-12
3
时,△AFB’是直角三角形.
点评:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了含30度的直角三角形三边的关系以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.
(1)请你用含x的代数式表示h;
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△精英家教网A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x.
(1)用x表示△AMN的面积;
(2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM所在的平面内),设点A落在平面精英家教网BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y.
①用含x的代数式表示y,并写出x的取值范围.
②当x为何值时,重叠部分的面积y最大,最大为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为(  )
A、6
B、3
C、2
3
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°,在AC上取一点E,以BE为折痕翻折△ABC,使AB的一部分与BC重合,A与BC延长线上的点D重合,则线段AD的长度为(  )

查看答案和解析>>

同步练习册答案