【题目】如图1,将正方形ABCD按图1所示置于平面直角坐标系中,AD边与x轴重合,顶点B,C位于x轴上方,将直线l:y=x﹣3沿x轴向左以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t秒,m与t的函数图象如图2所示,则a,b的值分别是( )
A.6,B.6,C.7,7D.7,5
【答案】D
【解析】
先根据△OEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.
解:如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,
即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,
∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,
由图2可得,t=2时,直线l经过点A,
∴AO=3﹣2×1=1,
∴A(1,0),
由图2可得,t=12时,直线l经过点C,
∴当t=+2=7时,直线l经过B,D两点,
∴AD=(7﹣2)×1=5,
∴等腰Rt△ABD中,BD= ,
即当a=7时,b=.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)直接用含t的代数式表达线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料,并完成相应的任务.
人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.
我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.
弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.
下面是弦切角定理的部分证明过程:
证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB=90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.
如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD交⊙O于点D,在上任取一点E,连接EC,ED,EA,则∠CED=∠CAD.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A、C的坐标分别为(4,6)、(5,4),且AB平行于x轴,将矩形ABCD向左平移,得到矩形A′B′C′D′.若点A′、C′同时落在函数的图象上,则k的值为( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G, .
(1)求证:△CAD∽△CBG;
(2)联结DG,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的学习材料:
我们知道,一般情况下式子与“”是不相等的(m,n均为整数),但当m,n取某些特定整数时,可以使这两个式子相等,我们把使“=”成立的数对“m,n”叫做“好数对”,记作[m,n],例如,当m=n=0时,有=成立,则数对“0,0”就是一对“好数对”,记作[0,0]
解答下列问题:
(1)通过计算,判断数对“3,4”是否是“好数对”;
(2)求“好数对”[x,﹣32]中x的值;
(3)请再写出一对上述未出现的“好数对”[ , ];
(4)对于“好数对[a,b],如果a=9k(k为整数),则b= (用含k的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正方形ABCD折叠,使点A与CD边上的点H重合(H不与C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD周长为m,△CHG周长为n,则为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com