精英家教网 > 初中数学 > 题目详情
抛物线y=ax2+bx+c(a>0)经过点A(-3
3
,0
),B(
3
,0
)与y轴交于点C,设抛物线的顶点为D,在△BCD中,边CD的高为h.
(1)若c=ka,求系数k的值;
(2)当∠ACB=90°,求a及h的值;
(3)当∠ACB≥90°时,经过探究、猜想请你直接写出h的取值范围.
(不要求书写探究、猜想的过程)
(1)因为A(-3
3
,0),B(
3
,0)在抛物线y=ax2+bx+c(a>0)上,
所以有,y=a(x+3
3
)(x-
3
)=a(x2+2
3
x-9
),
又因为c=-9a
所以k=-9.

(2)由于∠ACB=90°时,
∵OC⊥AB,
∴∠AOC=∠BOC=90°.
可得∠ACO=∠OBC.
∴△AOC△COB.
AO
OC
=
OC
OB

即OC2=OA•OB=3
3
×
3
=9.
∴OC=3.
∵C(0-3),由(1)知-9a,
∴a=
1
3

过D作DE⊥OC交y轴于点E,延长DC交x轴于点H,过B作BF⊥CH于点F.
即BF是边DC的高h.
因为D是抛物线的顶点,
所以D(-
3
,-4
),
故OE=4,又OC=3,可得CE=1,DE=
3

易证△HCO△DCE,有
HO
DE
=
CO
EC
=
3
1
=3,
故OH=3DE=3
3
,BH=OH-OB=2
3

由于∠COH=90°,OC=3,OH=3
3
,由勾股定理知CH=6,有∠OHC=30°,
又因为在Rt△BHF中,BH=2
3

所以BF=
3
,即h=
3


(3)当∠ACB≥90°时,猜想0<h≤
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8),
(1)试求抛物线的解析式;
(2)设点D是该抛物线的顶点,试求直线CD的解析式;
(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的表达式是y=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M离墙1米,离地面
40
3
米,求水流下落点B离墙距离OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为4,点P是AB上不与A、B重合的任意一点,作PQ⊥DP,Q在BC上,设AP=x,BQ=y,
(1)求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)求函数图象的顶点坐标,并作出大致图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=
1
2
x+
3
2
与直线y=x交于点A,点B在直线y=
1
2
x+
3
2
上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.
(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FEx轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交与A,B两点,与y轴交与点C,已知点A的坐标为(-2,0),sin∠ABC=
2
5
5
,点D是抛物线的顶点,直线DC交x轴于点E.
(1)求抛物线的解析式及其顶点D的坐标;
(2)在直线CD上是否存在一点Q,使以B,C,Q为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由;
(3)点P是直线y=2x-4上一点,过点P作直线PM垂直于直线CD,垂足为M,若∠MPO=75°,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知:抛物线y=
1
2
x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=
1
2
x-2,连接AC.
(1)B、C两点坐标分别为B(______,______)、C(______,______),抛物线的函数关系式为______;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长是4,E是AB边上一点(E不与A、B重合),F是AD的延长线上一点,DF=2BE.四边形AEGF是句型,其面积y随BE的长x的变化而变化且构成函数.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若上述(1)中是二次函数,请用配方法把它转化成y=a(x-h)2+k的形式,并指出当x取何值时,y取得最大(或最小)值,该值是多少?
(3)直接写出抛物线与x轴交点坐标.

查看答案和解析>>

同步练习册答案