精英家教网 > 初中数学 > 题目详情
我们学习过二次函数的图象的平移,先作出二次函数y=2x2+1的图象.
①向上平移3个单位,所得图象的函数表达式是
 

②向下平移4个单位,所得图象的函数表达式是
 

③向左平移5个单位,所得图象的函数表达式是
 

④向右平移6个单位,所得图象的函数表达式是
 

由此可以归纳二次函数y=ax2+c向上平移m个单位,所得图象的函数表达式是
 
;向下平移m个单位,所得图象的函数表达式是
 
;向左平移n个单位,所得图象的函数表达式是
 
;向右平移n个单位,所得图象的函数表达式是
 

我们来研究二次函数的图象的翻折,在一张纸上作出二次函数y=x2-2x-3的图象,
⑤沿x轴把这张纸对折,所得图象的函数表达式是
 

⑥沿y轴把这张纸对折,所得图象的函数表达式是
 

由此可以归纳二次函数y=ax2+bx+c若沿x轴翻折,所得图象的函数表达式是
 
,若沿y轴翻折,所得图象的函数表达式是
 

我们继续研究二次函数的图象的旋转,将二次函数y=-
12
x2
+x-1的图象,绕原点旋转180°,所得图象的函数表达式是
 

由此可以归纳二次函数y=ax2+bx+c的图象绕原点旋转180°,所得图象的函数表达式是
 
.(备用图如下)精英家教网
分析:①向上平移,顶点的纵坐标1+3即可;
②向下平移,顶点的纵坐标1-4即可;
③向左平移,顶点的横坐标0-5即可;
④向右平移,顶点的横坐标0+6即可;
⑤两抛物线关于x轴对称,那么二次项的系数,一次项的系数,常数项均互为相反数;
⑥两抛物线关于y轴对称,二次项系数,常数项不变,一次项系数互为相反数;绕原点旋转180°可得实际是两抛物线关于x轴对称.
解答:解:①y=2x2+4;

②y=2x2-3;

③y=2(x+5)2+1;

④y=2(x-6)2+1;
y=ax2+c+m;y=ax2+c-m;y=a(x+n)2+c;y=a(x-n)2+c;

⑤y=-x2+2x+3;

⑥y=x2+2x-3 y=-ax2-bx-c;y=ax2-bx+c;y=
1
2
x2-x+1;y=-ax2-bx-c.
点评:本题考查二次函数的变化特点,需注意动手操作,观察得到相应规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋钮位置从0度到90度(如图),燃气关闭时,燃气关闭时,燃气灶旋钮的位置为0度,旋钮角度越大,燃气流量越大,燃气开到最大时,旋钮角度为90度.为测试燃气灶旋钮在不同位置上的燃气用量,在相同条件下,选择在燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度度的范围是),记录相关数据得到下表:
旋钮角度(度) 20 50 70 80 90
所用燃气量(升) 73 67 83 97 115
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?
(2)当旋钮角为多少时,烧开一壶水所用燃气量最少?最少是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:
 旋钮角度(度) 20  50  70  80  90 
 所用燃气量(升)  73  67  83  97 115 
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

我们学习过二次函数的图象的平移,先作出二次函数y=2x2+1的图象.
①向上平移3个单位,所得图象的函数表达式是________;
②向下平移4个单位,所得图象的函数表达式是________;
③向左平移5个单位,所得图象的函数表达式是________;
④向右平移6个单位,所得图象的函数表达式是________.
由此可以归纳二次函数y=ax2+c向上平移m个单位,所得图象的函数表达式是________;向下平移m个单位,所得图象的函数表达式是________;向左平移n个单位,所得图象的函数表达式是________;向右平移n个单位,所得图象的函数表达式是________,
我们来研究二次函数的图象的翻折,在一张纸上作出二次函数y=x2-2x-3的图象,
⑤沿x轴把这张纸对折,所得图象的函数表达式是________;
⑥沿y轴把这张纸对折,所得图象的函数表达式是________.
由此可以归纳二次函数y=ax2+bx+c若沿x轴翻折,所得图象的函数表达式是________,若沿y轴翻折,所得图象的函数表达式是________.
我们继续研究二次函数的图象的旋转,将二次函数y=-数学公式+x-1的图象,绕原点旋转180°,所得图象的函数表达式是________;
由此可以归纳二次函数y=ax2+bx+c的图象绕原点旋转180°,所得图象的函数表达式是________.(备用图如下)

查看答案和解析>>

科目:初中数学 来源:2007年江西省中等学校招生考试数学样卷(解析版) 题型:解答题

(2007•江西模拟)我们学习过二次函数的图象的平移,先作出二次函数y=2x2+1的图象.
①向上平移3个单位,所得图象的函数表达式是______;
②向下平移4个单位,所得图象的函数表达式是______;
③向左平移5个单位,所得图象的函数表达式是______;
④向右平移6个单位,所得图象的函数表达式是______.
由此可以归纳二次函数y=ax2+c向上平移m个单位,所得图象的函数表达式是______;向下平移m个单位,所得图象的函数表达式是______;向左平移n个单位,所得图象的函数表达式是______;向右平移n个单位,所得图象的函数表达式是______,
我们来研究二次函数的图象的翻折,在一张纸上作出二次函数y=x2-2x-3的图象,
⑤沿x轴把这张纸对折,所得图象的函数表达式是______;
⑥沿y轴把这张纸对折,所得图象的函数表达式是______.
由此可以归纳二次函数y=ax2+bx+c若沿x轴翻折,所得图象的函数表达式是______,若沿y轴翻折,所得图象的函数表达式是______.
我们继续研究二次函数的图象的旋转,将二次函数y=-+x-1的图象,绕原点旋转180°,所得图象的函数表达式是______;
由此可以归纳二次函数y=ax2+bx+c的图象绕原点旋转180°,所得图象的函数表达式是______.(备用图如下)

查看答案和解析>>

同步练习册答案