分析 (1)根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AO=DO,根据等腰三角形的性质得到AE=$\frac{1}{2}$AD=2,由勾股定理得到OE=$\sqrt{A{O}^{2}-A{E}^{2}}$=$\sqrt{5}$,即可得到结论.
解答 (1)证明:在△AOB和△DOC中,
$\left\{\begin{array}{l}{∠AOB=∠COD}\\{∠B=∠C}\\{AB=CD}\end{array}\right.$,
∴△AOB≌△DOC(AAS);
(2)∵△AOB≌△DOC,
∴AO=DO,
∵OE⊥AD于点E.
∴AE=$\frac{1}{2}$AD=2,
∴OE=$\sqrt{A{O}^{2}-A{E}^{2}}$=$\sqrt{5}$,
∴S△AOE=$\frac{1}{2}$×$4×\sqrt{5}$=2$\sqrt{5}$.
点评 本题考查了全等三角形的判定和性质,勾股定理,三角形的面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 70° | B. | 110° | C. | 120° | D. | 145° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com