【题目】如图,已知△ABC中,边AB、AC的垂直平分线分别交BC于E、F,若∠EAF=90°,AF=3,AE=4.
(1)求边BC的长;(2)求出∠BAC的度数.
【答案】(1)BC=12;(2)∠BAC=135°.
【解析】
(1)根据勾股定理求出EF,根据线段垂直平分线的性质得到EA=EB,FA=FC,结合图形计算,得到答案;
(2)根据等腰三角形的性质得到∠EAB=∠B,∠FAC=∠C,根据三角形内角和定理计算即可.
解:(1)由勾股定理得,EF===5,
∵边AB、AC的垂直平分线分别交BC于E、F,
∴EA=EB,FA=FC,
∴BC=BE+EF+FC=AE+EF+AF=12;
(2)∵EA=EB,FA=FC,
∴∠EAB=∠B,∠FAC=∠C,
由三角形内角和定理得,∠EAB+∠B+∠EAF+∠FAC+∠C=180°,
∴∠B+∠C=45°,
∴∠BAC=180°﹣∠B﹣∠C=135°.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,,此时五边形的面积记为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.
(1)求出这条抛物线的表达式;
(2)当时,求的值;
(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD.
(1)求证:∠ABO+∠CDO=90°;
(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)
(1)该商场第1次购进A、B两种商品各多少件?
(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正整数1至2018按一定规律排列如下表:
平移表中带阴影的方框,方框中三个数的和可能是( )
A. 2019 B. 2018 C. 2016 D. 2013
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣1,2),B(3,1),若直线y=kx﹣2与线段AB有交点,则k的值可能是( )
A. ﹣3B. ﹣2C. ﹣1D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).
(1)请画出△ABC,并写出点A、B、C的坐标;
(2)求出△AOA1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.
(1)求抛物线的函数表达式;
(2)求点D的坐标;
(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;
(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com