精英家教网 > 初中数学 > 题目详情

【题目】如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)①求证:CF=OC; ②若半圆O的半径为12,求阴影部分的周长.

【答案】
(1)解:结论:DE是⊙O的切线.

理由:∵四边形OABC是平行四边形,

又∵OA=OC,

∴四边形OABC是菱形,

∴OA=OB=AB=OC=BC,

∴△ABO,△BCO都是等边三角形,

∴∠AOB=∠BOC=∠COF=60°,

∵OB=OF,

∴OG⊥BF,

∵AF是直径,CD⊥AD,

∴∠ABF=∠DBG=∠D=∠BGC=90°,

∴四边形BDCG是矩形,

∴∠OCD=90°,

∴DE是⊙O的切线.


(2)①证明由(1)可知:∠COF=60°,OC=OF,

∴△OCF是等边三角形,

∴CF=OC.

②解:在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,

∴OE=2OC=24,EC=12

∵OF=12,

∴EF=12,

的长= =4π,

∴阴影部分的周长为4π+12+12


【解析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.
该事件最有可能是(填写一个你认为正确的序号).
①掷一个质地均匀的正六面体骰子,向上一面的点数是2;
②掷一枚硬币,正面朝上;
③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读以下内容:

已知实数x,y满足x+y=2,且求k的值.

三位同学分别提出了以下三种不同的解题思路:

甲同学:先解关于x,y的方程组,再求k的值.

乙同学:先将方程组中的两个方程相加,再求k的值.

丙同学:先解方程组,再求k的值.

(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.

(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)

请先在以下相应方框内打勾,再解答相应题目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是线段AB的中点,D是线段AB的五等分点,若CD=6cm.

1)求线段AB的长;

2)若AE=DE,求线段EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC = 90°,BC = 1,AC =

1以点B为旋转中心,将ABC沿逆时针方向旋转90°得到ABC′,请画出变换后的图形;

2求点A和点A′之间的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两地相距200km,一列火车从B地出发沿BC方向以的速度行驶,在行驶过程中,这列火车离A地的路程与行驶时间之间的函数关系式是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校兴趣小组对网上吐糟较为频繁的“医患关系”产生了兴趣,利用节假日在某社区开展了“造成医患关系紧张的原因”的问卷调查.

造成医患关系紧张的原因(单选)
A.药价高
B.检测项目太多且收费太高
C.住院报销比例低
D.医疗费与个人收入不相称
E.其他

根据调查结果绘制出了如下两幅尚不完整的统计图.

根据以上信息解答下列问题:
(1)这次接受调查的总人数为人;
(2)在扇形统计图中,“A”所在扇形的圆心角的度数为
(3)补全条形统计图;
(4)若该市有1000万人,请你估计选D的总人数.

查看答案和解析>>

同步练习册答案