【题目】如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法):作∠DAC的平分线AM,连接BE并延长交AM于点F.
(2)试猜想AF与BC有怎样的关系.
【答案】(1)见解析;(2)AF∥BC,AF=BC.
【解析】
(1)根据题意画出图形即可;
(2)首先根据等腰三角形的性质与三角形内角与外角的性质证明∠C=∠FAC,进而可得AF∥BC;然后再证明△AEF≌△CEB,即可得到AF=BC.
解:(1)如图所示;作∠DAC的平分线AM;
连接BE并延长交AM于点F;
(2)(2)AF∥BC,且AF=BC,
理由如下:∵AB=AC,
∴∠ABC=∠C,
∴∠DAC=∠ABC+∠C=2∠C,
由作图可得∠DAC=2∠FAC,
∴∠C=∠FAC,
∴AF∥BC,
∵E为AC中点,
∴AE=EC,
在△AEF和△CEB中
,
∴△AEF≌△CEB(ASA).
∴AF=BC.
综上可知,
AF∥BC,AF=BC.
科目:初中数学 来源: 题型:
【题目】已知:点、、不在同一条直线上,.
(1)如图1,当,时,求的度数;
(2)如图2,、分别为、的平分线所在直线,试探究与的数量关系;
(3)如图3,在(2)的前提下,有,,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机器零件的横截面如图所示,按要求线段AB和DC的延长线相交成直角才算合格,一工人测得∠A=23°,∠D=31°,∠AED=143°,请你帮他判断该零件是否合格:___.(填“合格”或“不合格”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.
【1】(1)求抛物线对应的函数关系式;
【2】(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
【3】(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:△AEF≌△DEC;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB分别交y轴、x轴于A、B两点,OA=2,tan∠ABO=,抛物线y=﹣x2+bx+c过A、B两点.
(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积;
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为弧BE的中点,连接AD交OE于点F,若AC=FC
(Ⅰ)求证:AC是⊙O的切线;
(Ⅱ)若BF=5,DF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.
请你结合图中信息,解答下列问题:
(1)本次共调查了 名学生;
(2)被调查的学生中,最喜爱丁类图书的有 人,最喜爱甲类图书的人数占本次被调查人数的 %;
(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com