精英家教网 > 初中数学 > 题目详情

作业宝如图,∠A=∠BCE,CE平分∠BCD,那么CE与AB的位置关系如何?为什么?

解:CE∥AB,
理由:∵∠A=∠BCE,CE平分∠BCD,
∴∠BCE=∠DCE=∠A,
∴CE∥AB(同位角相等,两直线平行).
分析:利用角平分线的性质得出∠BCE=∠DCE=∠A,进而得出CE与AB的位置关系.
点评:此题主要考查了平行线的判定以及角平分线的性质,根据已知得出∠BCE=∠DCE=∠A是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同-直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)
(2)选择(1)中你写出的一个命题,说明它正确的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•邯郸一模)(1)如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F.
求证:AB=DE,AB⊥DE;
(2)如果将(1)中的两个正方形换成两个矩形,如图2,且
AC
CD
=
BC
CE
=
3
,则AB与DE的数量关系与位置关系会发生什么变化?请说明你的看法和理由.
(3)如果将(1)中的两个正方形换成两个直角三角形,如图3,∠BCE=∠ACD=90°,且
AC
CD
=
BC
CE
=k,且请直接写出AB与DE的数量关系与位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在边AB上取点D,在CA的延长线上取点E,使AC•CE+AB•BD=BC2
求证:(1)∠CEB>∠ABC;
(2)BE=2CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,∠A=∠BCE,CE平分∠BCD,那么CE与AB的位置关系如何?为什么?

查看答案和解析>>

同步练习册答案