【题目】如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.
【答案】
(1)解:∵点A(﹣1,2)在双曲线y= 上,
∴2= ,
解得,k=﹣2,
∴反比例函数解析式为:y=﹣ ,
∴b= =﹣1,
则点B的坐标为(2,﹣1),
∴ ,
解得,m=﹣1,n=1
(2)解:对于y=﹣x+1,当x=0时,y=1,
∴点C的坐标为(0,1),
∵点D与点C关于x轴对称,
∴点D的坐标为(0,﹣1),
∴△ABD的面积= ×2×3=3
(3)解:对于y=﹣x+1,当y=0时,x=1,
∴直线y=﹣x+1与x轴的交点坐标为(0,1),
当点P在x轴上时,设点P的坐标为(a,0),
S△PAB= ×|1﹣a|×2+ ×|1﹣a|×1=3,
解得,a=﹣1或3,
当点P在y轴上时,设点P的坐标为(0,b),
S△PAB= ×|1﹣b|×2+ ×|1﹣b|×1=3,
解得,b=﹣1或3,
∴P点坐标为(﹣1,0)或(3,0)或(0,﹣1)或(0,3)
【解析】(1)由点A(﹣1,2)在双曲线上,得到k=﹣2,得到反比例函数解析式为,从而求出b的值和点B的坐标,把A、B坐标代入直线y=mx+n,求出m、n的值;(2)由一次函数的解析式求出点C的坐标,由点D与点C关于x轴对称,得到点D的坐标,从而求出△ABD的面积;(3)由一次函数的解析式得到直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),求出S△PAB=3,求出a的值,当点P在y轴上时,设点P的坐标为(0,b),求出S△PAB=3,求出b的值,从而得到P点坐标.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF,EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.
(1)求证:BE=2CF;
(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一张两边分别平行的纸条折成如图所示,EF为折痕,ED交BF于点G,且∠EFB=48°,则下列结论: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°;④∠DGF=96°,其中正确的个数有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程
如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解: 因为EF∥AD,
所以∠2=____ (_________________________________)
又因为∠1=∠2
所以∠1=∠3 (__________________)
所以AB∥_____ (___________________________________)
所以∠BAC+______=180°(___________________________)
因为∠BAC=70°
所以∠AGD=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分) 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;
(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副直角三角板如图放置,使GM与AB在同一直线上,其中点M在AB的中点处,MN与AC交于点E,∠BAC=30°,若AC=9cm,则EM的长为( )
A. 2.5cm B. 3cm C. 4cm D. 4.5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )
A.2:5 B.14:25 C.16:25 D.4:21
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com