分析 先把A点坐标代入y=x2+bx-2求出b得到抛物线解析式为y=x2-x-2,则求出C(0,-2),从而得到C点关于x轴的对称点C′的坐标为(0,2),再把解析式配成顶点式得到D($\frac{1}{2}$,-$\frac{9}{4}$),连结C′D交x轴于M,如图,根据两点之间线段最短可判断∴此时MC+MD的值最小,接着利用待定系数法求出直线C′D的解析式为y=-$\frac{17}{2}$x+2,然后确定M点坐标,从而得到m的值.
解答 解:把A(-1,0)代入y=x2+bx-2得1-b-2=0,解得b=-1,
∴抛物线解析式为y=x2-x-2,
当x=0时,y=x2-x-2=-2,则C(0,-2),
∴C点关于x轴的对称点C′的坐标为(0,2),
∵y=x2-x-2=(x-$\frac{1}{2}$)2-$\frac{9}{4}$,
∴D($\frac{1}{2}$,-$\frac{9}{4}$),
连结C′D交x轴于M,如图,
∵MC+MD=MC′+MD=C′D,
∴此时MC+MD的值最小,
设直线C′D的解析式为y=kx+n,
把C′(0,2),D($\frac{1}{2}$,-$\frac{9}{4}$)代入得$\left\{\begin{array}{l}{n=2}\\{\frac{1}{2}k+n=-\frac{9}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-\frac{17}{2}}\\{n=2}\end{array}\right.$,
∴直线C′D的解析式为y=-$\frac{17}{2}$x+2,
当y=0时,-$\frac{17}{2}$x+2=0,解得x=$\frac{4}{17}$,
∴此时M点的坐标为($\frac{4}{17}$,0),即m=$\frac{4}{17}$.
故答案为$\frac{4}{17}$.
点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题.也考查了最短路径问题的解决方法.
科目:初中数学 来源: 题型:选择题
最高气温(℃) | 38 | 39 | 40 | 41 |
天 数 | 3 | 2 | 1 | 4 |
A. | 39.5,39.6 | B. | 40,41 | C. | 41,40 | D. | 39,41 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com