精英家教网 > 初中数学 > 题目详情

【题目】材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2

例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72

材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.

根据材料回答:

(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;

(2)试证明10不是雪松数;

(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.

【答案】(1)112=112﹣32,40=72﹣32;(2)见解析;(3)12020.

【解析】试题分析:(1)根据雪松数的特征即可得到结论

2)根据题意即可得到结论

3)设t=ab均为正整数0ab9),另一个南麓数t′=mn均为正整数0nm9),根据南麓数的特征即可得到结论.

试题解析:(1112=1123240=7232

2)若10雪松数”,则可设a2b2=10ab均为正整数ab),则(a+b)(ab)=10.又∵10=2×5=10×1ab均为正整数a+bab解得ab均为正整数矛盾10不是雪松数

3)设t=ab均为正整数0ab9),另一个南麓数t′=mn均为正整数0nm9),t=(10m+n2﹣(10n+m2=99m2n2)=99m+n)(mn),99m+n)(mn)=1000a+100b+10b+a=1001a+110b整理得,(m+n)(mn)=10a+b+abmn均为正整数a+b=9经探究符合题意t的值分别为27725445t的值分别为86688338由材料一可知Ft)的最大值为862+682=12020

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

(1)探究:

①数轴上表示52的两点之间的距离是多少

②数轴上表示﹣2和﹣6的两点之间的距离是多少

③数轴上表示﹣43的两点之间的距离是多少

(2)归纳:

一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|

(3)应用:

①如果表示数a3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值

②若数轴上表示数a的点位于﹣43之间,求|a+4|+|a﹣3|的值.

③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.

(4)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1,A2,A3,A4,A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习有理数运算时发现以下三个等式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4

(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:

因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.

请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;

(2)通过上述验证,请你猜想直接写出结果:(ab)365等于多少,归纳得出:(ab)n等于多少(n为正整数);

(3)请应用(2)中归出的结论计算:(2017×112018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.

(1)求旋转角的度数;
(2)求点P与点P′之间的距离;
(3)求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC,B,C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=( )

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,∠C=90°,BC=6cm,将△ABC绕点A顺时针旋转15°后得到△AB′C′,则图中阴影部分的面积是cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

查看答案和解析>>

同步练习册答案