精英家教网 > 初中数学 > 题目详情
如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OBA的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OBnAn的边OAn与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是    

试题分析:∵点B1是面积为1的等边△OBA的两条中线的交点,∴点B1是△OBA的重心,也是内心。
∴∠BOB1=30°。
∵△OB1A1是等边三角形,∴∠A1OB=60°+30°=90°。
∵每构造一次三角形,OBi 边与OB边的夹角增加30°,
∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OBnAn的边OAn与等边△OBA的边OB第一次重合。
∴构造出的最后一个三角形为等边△OB10A10
如图,过点B1作B1M⊥OB于点M,


,即
,即
同理,可得,即
…,
,即构造出的最后一个三角形的面积是。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一枚运载火箭从地面O处发射,当火箭到达A点时,在观测点C测得其仰角是30°,火箭又上升了10km到达B点时,测得其仰角为60°,求观测点C到发射点O的距离.
(结果精确到0.1km.参考数据:).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.

(1)求小亮设计方案中甬路的宽度x;
(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点M在DE上)距D点3米.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=1430,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)
A.34.64mB.34.6mC.28.3mD.17.3m

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

比较大小:       (填“>”,“=”,“<”).

查看答案和解析>>

同步练习册答案