精英家教网 > 初中数学 > 题目详情
若△ABC∽△DEF,且对应边BCEF的比为2∶3,则△ABC与△DEF的面积
比等于     
4:9
本题考查相似三角形的性质
且其相似比为,则其面积之比为相似比的平方,即.
当△ABC∽△DEF,且对应边BCEF的比为2∶3时,则△ABC与△DEF的面积之比为
故正确答案为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在直角坐标系XOY中,二次函数图像的顶点坐标为,且与x轴的两个交点间的距离为6.

小题1:(1)求二次函数解析式;
小题2:(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个相似三角形的面积分别为6和24,且他们的周长的和为36,则其中较小的三角形的周长为_________cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
小题1:填充甲同学所得结果中的数据;
小题2: 写出在乙同学所得结果的求解过程;
小题3:当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分7分)是绕点旋转的两个相似三角形,其中为对应角.

小题1:(1)如图1,若分别是以为顶角的等腰直角三角形,且两三角形旋转到使点在同一条直线上的位置时,请直接写出线段与线段的关系;
小题2:(2)若为含有角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段与线段的关系,并说明理由;
小题3:(3)若为如图3的两个三角形,且=,在绕点旋转的过程中,直线夹角的度数是否改变?若不改变,直接用含的式子表示夹角的度数;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,给出下列条件:①;②;③
其中单独能够判定的个数为(  )
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分)
已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.

小题1:(1)填空:菱形ABCD的边长是    、面积是  、 高BE的长是   ;
小题2:(2)探究下列问题:
若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时
② △APQ的面积S关于t的函数关系式,以及S的最大值;
小题3:(3)在运动过程中是否存在某一时刻使得△APQ为等腰三角形,若存在求出t的值;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知在△ABC中,AB=3,AC=2,D是边AB上的一 点,∠ACD=∠B,∠BAC的平分线AQCDBC分别相交于点P和点Q,那么的值等于  ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在比例尺1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是6 cm,那么甲、乙两个城市之间的实际距离应为        km.

查看答案和解析>>

同步练习册答案