Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬µãOΪԭµã£¬µãAµÄ×ø±êΪ£¨0£¬8£©£¬µãCµÄ×ø±êΪ£¨6£¬0£©£®Å×ÎïÏßy=-
4
9
x2+bx+c¾­¹ýµãA¡¢C£¬ÓëAB½»ÓÚµãD£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©µãPΪÏ߶ÎBCÉÏÒ»¸ö¶¯µã£¨²»ÓëµãCÖغϣ©£¬µãQΪÏ߶ÎACÉÏÒ»¸ö¶¯µã£¬AQ=CP£¬Á¬½ÓPQ£¬ÉèCP=m£¬¡÷CPQµÄÃæ»ýΪS£®
¢ÙÇóS¹ØÓÚmµÄº¯Êý±í´ïʽ£»
¢Úµ±S×î´óʱ£¬ÔÚÅ×ÎïÏßy=-
4
9
x2+bx+cµÄ¶Ô³ÆÖálÉÏ£¬Èô´æÔÚµãF£¬Ê¹¡÷DFQΪֱ½ÇÈý½ÇÐΣ¬ÇëÖ±½Óд³öËùÓзûºÏÌõ¼þµÄµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©½«A¡¢CÁ½µã×ø±ê´úÈëÅ×ÎïÏßy=-
4
9
x2+bx+c£¬¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¢ÙÏÈÓÃm±íʾ³öQEµÄ³¤¶È£¬½ø¶øÇó³öÈý½ÇÐεÄÃæ»ýS¹ØÓÚmµÄº¯Êý£»
¢ÚÖ±½Óд³öÂú×ãÌõ¼þµÄFµãµÄ×ø±ê¼´¿É£¬×¢ÒⲻҪ©д£®
½â´ð£º½â£º£¨1£©½«A¡¢CÁ½µã×ø±ê´úÈëÅ×ÎïÏߣ¬µÃ
c=8
-
4
9
¡Á36+6b+c=0
£¬
½âµÃ£º
b=
4
3
c=8
£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-
4
9
x2+
4
3
x+8£»

£¨2£©¢Ù¡ßOA=8£¬OC=6£¬
¡àAC=
OA2+OC2
=10£¬
¹ýµãQ×÷QE¡ÍBCÓëEµã£¬Ôòsin¡ÏACB=
QE
QC
=
AB
AC
=
3
5
£¬
¡à
QE
10-m
=
3
5
£¬
¡àQE=
3
5
£¨10-m£©£¬
¡àS=
1
2
•CP•QE=
1
2
m¡Á
3
5
£¨10-m£©=-
3
10
m2+3m£»

¢Ú¡ßS=
1
2
•CP•QE=
1
2
m¡Á
3
5
£¨10-m£©=-
3
10
m2+3m=-
3
10
£¨m-5£©2+
15
2
£¬
¡àµ±m=5ʱ£¬SÈ¡×î´óÖµ£»
ÔÚÅ×ÎïÏ߶ԳÆÖálÉÏ´æÔÚµãF£¬Ê¹¡÷FDQΪֱ½ÇÈý½ÇÐΣ¬
¡ßÅ×ÎïÏߵĽâÎöʽΪy=-
4
9
x2+
4
3
x+8µÄ¶Ô³ÆÖáΪx=
3
2
£¬
DµÄ×ø±êΪ£¨3£¬8£©£¬Q£¨3£¬4£©£¬
µ±¡ÏFDQ=90¡ãʱ£¬F1£¨
3
2
£¬8£©£¬
µ±¡ÏFQD=90¡ãʱ£¬ÔòF2£¨
3
2
£¬4£©£¬
µ±¡ÏDFQ=90¡ãʱ£¬ÉèF£¨
3
2
£¬n£©£¬
ÔòFD2+FQ2=DQ2£¬
¼´
9
4
+£¨8-n£©2+
9
4
+£¨n-4£©2=16£¬
½âµÃ£ºn=6¡À
7
2
£¬
¡àF3£¨
3
2
£¬6+
7
2
£©£¬F4£¨
3
2
£¬6-
7
2
£©£¬
Âú×ãÌõ¼þµÄµãF¹²ÓÐËĸö£¬×ø±ê·Ö±ðΪ
F1£¨
3
2
£¬8£©£¬F2£¨
3
2
£¬4£©£¬F3£¨
3
2
£¬6+
7
2
£©£¬F4£¨
3
2
£¬6-
7
2
£©£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĽâÎöʽµÄÇó·¨Å×ÎïÏßµÄ×îÖµµÈ֪ʶµã£¬ÊǸ÷µØÖп¼µÄÈȵãºÍÄѵ㣬½âÌâʱעÒâÊýÐνáºÏÊýѧ˼ÏëµÄÔËÓã¬Í¬Ñ§ÃÇÒª¼ÓǿѵÁ·£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬ÒÑÖªA¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪA£¨4£¬0£©¡¢C£¨0£¬2£©£¬DΪOAµÄÖе㣮ÉèµãÕâPÊÇ¡ÏAOCƽ·ÖÏßÉϵÄÒ»¸ö¶¯µã£¨²»ÓëµãOÖغϣ©£®
£¨1£©Ìî¿Õ£ºÎÞÂÛµãPÔ˶¯µ½ºÎ´¦£¬PC
 
PD£¨Ìî¡°£¾¡±¡¢¡°£¼¡±»ò¡°=¡±£©£»
£¨2£©µ±µãPÔ˶¯µ½ÓëµãBµÄ¾àÀë×îСʱ£¬ÊÔÈ·¶¨¹ýO¡¢P¡¢DÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÉèµãEÊÇ£¨2£©ÖÐËùÈ·¶¨Å×ÎïÏߵĶ¥µã£¬µ±µãPÔ˶¯µ½ºÎ´¦Ê±£¬¡÷PDEµÄÖܳ¤×îС£¿Çó¾«Ó¢¼Ò½ÌÍø³ö´ËʱµãPµÄ×ø±êºÍ¡÷PDEµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬ÒÑÖªA¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪA£¨4£¬0£©¡¢C£¨0£¬2£©£¬DΪOAµÄÖе㣮ÉèµãPÊÇ¡ÏAOC¾«Ó¢¼Ò½ÌÍøƽ·ÖÏßÉϵÄÒ»¸ö¶¯µã£¨²»ÓëµãOÖغϣ©£®
£¨1£©ÊÔÖ¤Ã÷£ºÎÞÂÛµãPÔ˶¯µ½ºÎ´¦£¬PC×ÜÓëPDÏàµÈ£»
£¨2£©µ±µãPÔ˶¯µ½ÓëµãBµÄ¾àÀë×îСʱ£¬ÊÔÈ·¶¨¹ýO¡¢P¡¢DÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÉèµãEÊÇ£¨2£©ÖÐËùÈ·¶¨Å×ÎïÏߵĶ¥µã£¬µ±µãPÔ˶¯µ½ºÎ´¦Ê±£¬¡÷PDEµÄÖܳ¤×îС£¿Çó³ö´ËʱµãPµÄ×ø±êºÍ¡÷PDEµÄÖܳ¤£»
£¨4£©ÉèµãNÊǾØÐÎOABCµÄ¶Ô³ÆÖÐÐÄ£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹¡ÏCPN=90¡ã£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬AB¡ÎxÖᣮº¯Êýy=
1x
(x£¾0)
µÄͼÏó·Ö±ð½»AB¡¢BC±ßÓÚP¡¢QÁ½µã£¬ÇÒPÊǾ«Ó¢¼Ò½ÌÍøABµÄÖе㣬ÉèµãPµÄºá×ø±êΪa£®
£¨1£©Óú¬aµÄ´úÊýʽ±íʾµãQµÄ×ø±ê£®
£¨2£©ÊÔ˵Ã÷µãQÊÇBCµÄÖе㣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÆÎÌïÖʼ죩Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬OA¡¢OCÁ½±ß·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬OA=3£¬OC=2£¬¹ýOA±ßÉϵÄDµã£¬ÑØ×ÅBD·­ÕÛ¡÷ABD£¬µãAÇ¡ºÃÂäÔÚBC±ßÉϵĵãE´¦£¬·´±ÈÀýº¯Êýy=
kx
£¨k£¾0£©ÔÚµÚÒ»ÏóÏÞÉϵÄͼÏó¾­¹ýµãEÓëBDÏཻÓÚµãF£®
£¨1£©ÇóÖ¤£ºËıßÐÎABEDÊÇÕý·½ÐΣ»
£¨2£©µãFÊÇ·ñΪÕý·½ÐÎABEDµÄÖÐÐÄ£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÓÀ´ºÏØÖʼ죩Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬µãA¡¢CµÄ×ø±ê·Ö±ðÊÇ£¨a£¬0£©£¬£¨0£¬
3
£©£¬µãDÊÇÏ߶ÎBCÉϵĶ¯µã£¨ÓëB¡¢C²»Öغϣ©£¬¹ýµãD×÷Ö±Ïßl£ºy=-
3
x+b
½»Ï߶ÎOAÓÚµãE£®
£¨1£©Ö±½Óд³ö¾ØÐÎOABCµÄÃæ»ý£¨Óú¬aµÄ´úÊýʽ±íʾ£©£»
£¨2£©ÒÑÖªa=3£¬µ±Ö±Ïßl½«¾ØÐÎOABC·Ö³ÉÖܳ¤ÏàµÈµÄÁ½²¿·Öʱ
¢ÙÇóbµÄÖµ£»
¢ÚÌÝÐÎABDEµÄÄÚ²¿ÓÐÒ»µãP£¬µ±¡ÑPÓëAB¡¢AE¡¢ED¶¼ÏàÇÐʱ£¬Çó¡ÑPµÄ°ë¾¶£®
£¨3£©ÒÑÖªa=5£¬Èô¾ØÐÎOABC¹ØÓÚÖ±ÏßDEµÄ¶Ô³ÆͼÐÎΪËıßÐÎO1A1B1C1£¬ÉèCD=k£¬µ±kÂú×ãʲôÌõ¼þʱ£¬Ê¹¾ØÐÎOABCºÍËıßÐÎO1A1B1C1µÄÖصþ²¿·ÖµÄÃæ»ýΪ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸