分析 分两种情况,如图1与图2所示,过O作OD⊥AB,OE⊥AC,连接OA,利用垂径定理及锐角三角函数定义分别求出∠OAC与∠OAB的度数,即可求出∠BAC度数.
解答 解:分两种情况考虑:
如图1所示,过O作OD⊥AB,OE⊥AC,连接OA,
∴AE=$\frac{1}{2}$AC=$\sqrt{3}$,AD=$\frac{1}{2}$AB=$\sqrt{2}$,且∠OAE=30°,∠OAB=45°,
∴∠BAC=15°;
如图2所示,过O作OD⊥AB,OE⊥AC,连接OA,
∴AE=$\frac{1}{2}$AC=$\sqrt{3}$,AD=$\frac{1}{2}$AB=$\sqrt{2}$,且∠OAE=30°,∠OAB=45°,
∴∠BAC=75°,
故答案为:15°或75°
点评 此题考查了垂径定理,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{a}{2}$ | B. | $\frac{\sqrt{3}}{2}$a | C. | a | D. | $\sqrt{3}$a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
路程(千米) | 30 | 33 | 27 | 37 | 35 | 53 | 30 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com