精英家教网 > 初中数学 > 题目详情
(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.
(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.
分析:(1)先求证△ACN≌△MCB,得出AN=BM,∠ANC=∠MBA,再证△NFC≌△BEC,得出CE=CF,∠BCE=∠NCF,利用等边三角形的角度60,得出∠ECF=60°,证得结论成立;
(2)证明过程如上(1)中的结论只有CE=CF,而∠ECF只等于等腰三角形的顶角≠60°,得出结论不成立.
解答:(1)如图1,

△CEF是等边三角形,
理由:∵等边△ACM和△CBN,
∴AC=MC,BC=NC,∠ACN=∠MCB,
在△ACN和△MCB中
AC=MC
∠ACN=∠MCB
NC=BC

∴△ACN≌△MCB(SAS),
∴AN=MB,∠ANC=∠MBA,
在△NFC和△BEC中,
NF=BE
∠FNC=∠EBC
NC=BC

∴△NFC≌△BEC(SAS),
∴EC=CF,
∵∠BCE+∠ECN=60°,∠BCE=∠NCF,
∴∠ECF=60°,
∴△CEF是等边三角形;

(2)如图2,

不成立,首先∠ACN≠∠MCB,
∴△ACN与△MCB不全等.
如果有两个等腰三角形的顶角相等,那么结论也不成立,
证明方法与上面类似,只能得到CE=CF,而∠ECF只等于等腰三角形的顶角≠60°.
点评:此题综合考查等边三角形的性质与判定,三角形全等的判定与性质,等腰三角形的性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,y=x2+ax+2a与x轴交于A,B两点,点E(2,0)绕点O顺时针旋转90°后的对应点C在此抛物线上,点P(4,2).
(1)求抛物线解析式;
(2)如图1,点F是线段AC上一动点,作矩形FC1B1A1,使C1在CB上,B1,A1在AB上,设线段A1F的长为a,求矩形FC1B1A1的面积S与a的函数关系式,并求S的最大值;
(3)如图2,在(1)的抛物线上是否存在两个点M,N,使以O,M,N,P为顶点的四边形是平行四边形?若存在,求出点M,N的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点B是线段AD上一点,△ABC和△BDE分别是等边三角形,连接AE和CD.
(1)求证:AE=CD;
(2)如图2,点P、Q分别是AE、CD的中点,试判断△PBQ的形状,并证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为
60
60
度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若点P是反比例函数y=
5
2x
图象上的任意一点,且PD⊥x轴于点D,则△POD的面积是
5
4
5
4

查看答案和解析>>

同步练习册答案