精英家教网 > 初中数学 > 题目详情
20、给出下列算式:
1×2×3×4+1=52
2×3×4×5+1=112
3×4×5×6+1=192
4×5×6×7+1=292

观察上面一系列算式,你能发现有什么规律?证明你得出的结论.
分析:等号的左边第一个加数是连续四个自然数的乘积,第二个加数都是1,等号的右边是连续四个自然数中间两个数乘积与1差的平方(或两端数乘积与1和的平方).
解答:解:由1×2×3×4+1=52
2×3×4×5+1=112
3×4×5×6+1=192
4×5×6×7+1=292

可以发现算式规律:n(n+1)(n+2)(n+3)+1=[(n+1)(n+2)-1]2=(n2+3n+1)2
证明:左边=[n(n+3)][(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n+1)2
右边=(n2+3n+1)2
左边=右边
所以,猜想的结论正确.
点评:先发现式子中特殊数的变化规律,再去发现一般规律,最后验证.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、给出下列算式:32-12=8=8×1,52-32=16=8×2,72-52=24=8×3,92-72=32=8×4

观察上面一系列算式,你能发现什么规律,用代数式表示这个规律.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、给出下列算式:32-12=8×1;52-32=8×2;72-52=8×3…观察上面的算式,你能发现什么规律?请用数学式子表示出来
(2n+1)2-(2n-1)2=8n

查看答案和解析>>

科目:初中数学 来源: 题型:

1、给出下列算式:12+1=1×2,22+2=2×3,32+3=3×4,则n2+n=
n(n+1)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、给出下列算式:32-12=8=8×1,52-32=16=8×2,72-52=24=8×3,92-72=32=8×4,…
观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n的等式表示这个规律为:
(2n+1)2-(2n-1)2=8n

查看答案和解析>>

同步练习册答案