已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )
A.b≥-1 | B.b≤-1 | C.b≥1 | D.b≤1 |
科目:初中数学 来源: 题型:解答题
阅读材料:若a,b都是非负实数,则.当且仅当a=b时,“=”成立.
证明:∵,∴.
∴.当且仅当a=b时,“=”成立.
举例应用:已知x>0,求函数的最小值.
解:.当且仅当,即x=1时,“=”成立.
当x=1时,函数取得最小值,y最小=4.
问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
人均住房面积(平方米) | 单价(万元/平方米) |
不超过30(平方米) | 0.3 |
超过30平方米不超过m(平方米)部分(45≤m≤60) | 0.5 |
超过m平方米部分 | 0.7 |
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )
A.y=﹣2(x+1)2+2 | B.y=﹣2(x+1)2﹣2 |
C.y=﹣2(x﹣1)2+2 | D.y=﹣2(x﹣1)2﹣2 |
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=-x2+4x-5的图象上的三点,则y1,y2,y3的大小关系是( )
A. | B. |
C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com