精英家教网 > 初中数学 > 题目详情

【题目】已知在平面直角坐标系中,A(9,0),直线ly=.P,Q两点分别同时从O,A出发,P点沿直线l向上运动,Q点沿x轴向左运动,它们的速度相同.连接PQ,当

PQx轴时,P,Q两点同时停止运动.P点的横坐标为mm≥0),

(1)求m的取值范围;

(2)如图1,当OPQ是以OP为腰的等腰三角形时,求m的值;

(3)如果以PQ为边在上方作正方形PQEF,AQ为边在上方作正方形 QAGH,如图2,

①用含m的代数式表示E点的坐标;

②当正方形PQEF的某个顶点(Q点除外)落在正方形 QAGH的边上,请直接写出m的值.

【答案】(1)0≤m≤4;(2).(3)①E(9-m,9-);②m=4, ,.

【解析】

(1)直接将m点带入一次函数即可.

(2)讨论两个腰相等.

(3)过PE引x轴垂线,再讨论.

x=m带入y= xy=m,

∴P(m, m),∴OP==

∵OP=AQ,∴AQ=

∴OQ=9-, ∵PQx轴时,运动停止,

∴OH≤OQ, ∴m≤9-,且m≥0.

∴0≤m≤4.

(2)OP=PQ,则OH=OQ,∴m=(9-),m=

OP=OQ=9-,m=.

∴m=.

(3)

易证PMQ≌QNE,∴QN=PM=m,

∴ON=OQ+QN

=9-+m

=9-m

EN=MQ=OQ-OM=9--m=9-

∴E(9-m,9-

易求F(),

若点PHQ上,则m=9-,m=4.

若点FHG,=,m=.

若点FAG,=9,m=.()

若点EHG,9-=,m=.

若点EHG,9-m=9,m=0(舍).

∴m=4, ,.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD,EF相交于点O,OG是∠AOF的平分线,∠BOD=35°,COE=18°,则∠COG的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABN△ACM位置如图所示,AB=ACAD=AE∠1=∠2

1)求证:BD=CE

2)求证:∠M=∠N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在长方形ABCD中,点EAD的中点,连结BE,将ABE沿着BE翻折得到FBEEFBC于点H,延长BFDC相交于点G,若DG=16,BC=24,则AB=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AD=BC,AB=CD,ADAB,将长方形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若CDN的面积与CMN的面积比为1:3,

(1)求证:DN=BM;(2)求ND:NA的值;(3)求MN2BM2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y= x﹣3与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CPCO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PEAO.

(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;

(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图中∠1与∠2,3与∠4分别是哪两条直线被哪一条直线所截而成的?是什么角?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.

查看答案和解析>>

同步练习册答案