【题目】如图①.抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于A(﹣1,0)、B(3,0)、C三点.
(1)求a和b的值;
(2)点D(2,m)在第一象限的抛物线上,连接BC、BD、CD,在对称轴左侧的抛物线上存在一点P,满足∠PBC=∠DBC,请求出点P的坐标;
(3)如图②,在(2)的条件下将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B'O'C'在平移过程中,△B'O'C'与△BCD重叠部分的面积记为S,设平移的时问为t秒,请直接写出S与t之间的函数关系式(并注明自变量的取值范围).
【答案】(1)a=﹣1,b=2;(2)存在,P(﹣,);(3).
【解析】
(1)将点A、B代入解析式即可求出a、b的值.
(2)根据已知条件求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形求出点G的坐标,求出直线BP的解析式,联立二次函数解析式,求出点P的坐标.
(3)分两种情况,第一种情况重叠面积为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形的面积公式求得.
(1)将点A(﹣1,0),B(3,0)代入抛物线,
,
解得a=﹣1,b=2.
(2)存在,
将点D代入抛物线的解析式得:m=3,
∴D(2,3),
令x=0,y=3,
∴C(0,3),
∴OC=OB,
∴∠OCB=∠CBO=45°,
如图1所示,
∵CD∥x轴,
∴∠DCB=∠BCO=45°,
在△CDB和△CGB中,
∴△CDB≌△CGB(ASA),
∴CG=GD=2,
∴OG=1,
∴G(0,1),
设直线BP:y=kx+1,
代入点B,
∴k=﹣ ,
∴直线BP:y=﹣x+1,
联立直线BP和二次函数解析式,
解得 或 (舍),
∴P.
(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,
当0≤t≤2时,如图2所示,
设直线B′C′:y=﹣(x﹣t)+3,
联立直线BD求得F(),
S=.
当2<t≤3时,如图3所示,
H(t,﹣3t+9),I(t,﹣t+3),
S=×(3﹣t)=t2﹣6t+9,
综上所述:.
科目:初中数学 来源: 题型:
【题目】跳绳是大家喜闻乐见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线,下图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的手之间的距离为4,离地面的高度为1,以小明的手所在位置为原点建立平面直角坐标系.
(1)当身高为15的小红站在绳子的正下方,且距小明拿绳子手的右侧1处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的表达式;
(2)若身高为的小丽也站在绳子的正下方.
①当小丽在距小亮拿绳子手的左侧1.5处时,绳子能碰到小丽的头吗?请说明理由;
②设小丽与小亮拿绳子手之间的水平距离为,为保证绳子不碰到小丽的头顶,求的取值范围.(参考数据: 取3.16)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.
(1)求的值;
(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )
A. 若AD⊥BC,则四边形AEDF是矩形
B. 若AD垂直平分BC,则四边形AEDF是矩形
C. 若BD=CD,则四边形AEDF是菱形
D. 若AD平分∠BAC,则四边形AEDF是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN,直线BD与MN交于点E.
(1)如图1.当点M在BC上时,为证明“BD﹣2DE=BM”这一结论,小敏添加了辅助线:过点M作CD的平行线交BD于点P.请根据这一思路,帮助小敏完成接下去的证明过程.
(2)如图2,当点M在BC的延长线上时,则BD,DE,BM之间满足的数量关系是 .
(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G,如图3,若 CM=2,则线段DG= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).
(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com