精英家教网 > 初中数学 > 题目详情

【题目】已知四边形内接于,对角线,连接于点.

1)如图1,求证:

2)如图2,作,交,连接,求证:

3)在(2)的条件下,连接,若,,求.

【答案】1)详见解析;(2)详见解析;(3

【解析】

1)延长CO交⊙OK,连接DK,利用圆周角定理得到∠CDK=90°,根据ACBD及圆周角定理求得∠CBD=CKD,即可求出结论;

2)根据垂直的定义及圆周角定理得到∠BDC=BDF,得到DB垂直平分CH,即可证得结论;

3)作EQEFFDQONACNOMBDM ,先证△AEDBEC都为等腰直角三角形,根据 AEF≌△DEQ求出,勾股定理得AD=,得到AE=ED=12,再利用BE:DE=13及勾股定理求出OC即可.

1)解:延长CO交⊙OK,连接DK.

CK为⊙O直径,

∴∠CDK=90°,

∴∠OCD+CKD=90°,

ACBDE

∴∠BEC=90°,

∴∠ACB+CBD=90°,

∵∠CBD=CKD

∴∠ACB=OCD

2)∵DFABF

∴∠DFB=90°,

ACBDE

∴∠AEB=90°,

∴∠BAC+DBF=90°,

∴∠BDF+DBF=90°,

∴∠BDF=BAC

∵∠BAC=BDC

∴∠BDC=BDF

∴∠DHC=DCH

DB垂直平分CH

BH=BC

3)作EQEFFDQONACNOMBDM

BCAD

∴∠BCA=DAC

∵∠BCA=ADB

∴∠DAC=ADB

∴△AED与△BEC都为等腰直角三角形,

∵△AEF≌△DEQ

AF=QD=EF=EQ=

FQ=

,勾股定理得AD=

AE=ED=12

BEDE=13

BE=CE=4

BD=AC=16

BM=CN=8

OM=EN=4

ON=EM=4

OC=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,等腰RtABC中,∠ACB90°CBCA,在△ABE中,∠AEB90°AEBC交于点F

(1)若∠BAE30°BF2,求BE的长;

(2)如图2DBE延长线上一点,连接ADFDCD,若ABAD,∠ACD135°,求证:BD+BFAF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一座抛物线形拱桥,正常水位桥下面宽度为米,拱顶距离水平面米,如图建立直角坐标系,若正常水位时,桥下水深米,为保证过往船只顺利航行,桥下水面宽度不得小于米,则当水深超过多少米时,就会影响过往船只的顺利航行(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点BC重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AC分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B与点C关于原点对称,二次函数yx2+bx+c的图象经过点B,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.

1)求二次函数的表达式;

2)动点P从点A到点D,同时动点Q从点C到点A都以每秒1个单位的速度运动,设运动时间为t秒.

①当t为何值时,有PQAC

②当t为何值时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低。马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:

品种

A

B

原来的运费

45

25

现在的运费

30

20

(1)求每次运输的农产品中A,B产品各有多少件?

(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生的汉字书写能力,某学校连续举办了几届汉字听写大赛,今年经过层层选拔,确定了参加决赛的选手,决赛的比赛规则是每正确听写出1个汉字得2分,满分是100分,下面是根据决赛的成绩绘制出的不完整的频数分布表、扇形统计图和频数分布直方图.

请结合图表完成下列各题

1)表中a的值为______,并把频数分布直方图补充完整;

2)学校想利用频数分布表估计这次决赛的平均成绩,请你直接写出平均成绩;

3)通过与去年的决赛成绩进行比较,发现今年各类人数的中位数有了显著提高,提高了15%以上,求去年各类人数的中位数最高可能是多少?

4)想从A类学生的3名女生和2名男生中选出两人进行培训,直接写出选中1名男生和1名女生的概率是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为争创文明城市,我市交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,并将两次收集的数据制成如下统计图表.

类别

人数

百分比

A

68

6.8%

B

245

b%

C

a

51%

D

177

17.7%

总计

c

100%

根据以上提供的信息解决下列问题:

1a= b= c=

2)若我市约有30万人使用电瓶车,请分别计算活动前和活动后全市骑电瓶车都不戴安全帽的人数.

3)经过某十字路口,汽车无法继续直行只可左转或右转,电动车不受限制,现有一辆汽车和一辆电动车同时到达该路口,用画树状图或列表的方法求汽车和电动车都向左转的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年东营市教育局在全市中小学开展了情系疏勒书香援疆捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:

图书种类

频数(本)

频率

名人传记

175

a

科普图书

b

0.30

小说

110

c

其他

65

d

(1)求该校九年级共捐书多少本;

(2)统计表中的a=   ,b=   ,c=   ,d=   

(3)若该校共捐书1500本,请估计科普图书小说一共多少本;

(4)该社团3名成员各捐书1本,分别是1名人传记”,1科普图书”,1小说,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐名人传记”,1人捐科普图书的概率.

查看答案和解析>>

同步练习册答案