精英家教网 > 初中数学 > 题目详情

小明在找等边三角形ABC一边的三等分点时,他是这样做的,先做∠ABC、∠ACB的角平分线并且相交于点O,然后做线段BO、CO的垂直平分线,分别交BC于E、F,他说:“E、F就是BC边的三等分点.”你同意他的说法吗?请说明你的理由.

解:E,F是BC的三等分点.理由:
连接OE,OF,

∵DE垂直平分OB
∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),
同理OF=CF,
∴∠EBO=∠BOE,∠FCO=∠FOC,
∵等边三角形ABC中,
∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)
∵BO平分∠ABC,CO平分∠ACB
∴∠EBO=∠ABC=30°,∠FCO=∠ACB=30°
∴∠BOE=∠EBO=30°,∠FOC=∠FCO=30°
∴∠OEF=∠BOE+∠EBO=60°,∠OFE=∠FOC+∠FCO=60°,
∴△OEF是等边三角形(有两个内角60°的三角形是等边三角形)
∴OE=OF=EF(等边三角形各边相等)
∴BE=EF=FC,即E,F是BC的三等分点.
分析:连接OE,OF构建等腰三角形BOE和CFO,利用等腰三角形的“三线合一”推知的性质BE=OE、OF=CF,然后等边三角形ABC中,根据等边三角形的三个内角都是60°的性质、角平分线的性质证得△OEF是等边三角形(有两个内角60°的三角形是等边三角形);最后由等边三角形OEF的三条边都相等、等量代换证明BE=EF=FC即E,F是BC的三等分点.
点评:本题综合考查了等边三角形的性质、线段垂直平分线的性质.解答该题时,充分利用了等腰三角形的底边上的高线、中线、对角的角平分线三线合一的特性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网小明在找等边三角形ABC一边的三等分点时,他是这样做的,先做∠ABC、∠ACB的角平分线并且相交于点O,然后做线段BO、CO的垂直平分线,分别交BC于E、F,他说:“E、F就是BC边的三等分点.”你同意他的说法吗?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

11、请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

科目:初中数学 来源:2010年中考复习针对性训练 几何探究题(解析版) 题型:解答题

请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

同步练习册答案