精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:

①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.

其中正确的是          (写出所有正确结论的序号).

考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质。

解答:解:∠BAD与∠ABC不一定相等,选项①错误;

连接BD,如图所示:

∵GD为圆O的切线,

∴∠GDP=∠ABD,

又AB为圆O的直径,∴∠ADB=90°,

∵CE⊥AB,∴∠AFP=90°,

∴∠ADB=∠AFP,又∠PAF=∠BAD,

∴△APF∽△ABD,

∴∠ABD=∠APF,又∠APF=∠GPD,

∴∠GDP=∠GPD,

∴GP=GD,选项②正确;

∵直径AB⊥CE,

∴A为的中点,即=

又C为的中点,∴=

=

∴∠CAP=∠ACP,

∴AP=CP,

又AB为圆O的直径,∴∠ACQ=90°,

∴∠PCQ=∠PQC,

∴PC=PQ,

∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,

∴P为Rt△ACQ的外心,选项③正确;

连接CD,如图所示:

=

∴∠B=∠CAD,又∠ACQ=∠BCA,

∴△ACQ∽△BCA,

=,即AC2=CQ•CB,

=

∴∠ACP=∠ADC,又∠CAP=∠DAC,

∴△ACP∽△ADC,

=,即AC2=AP•AD,

∴AP•AD=CQ•CB,选项④正确,

则正确的选项序号有②③④.

故答案为:②③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.
求证:BF=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠EDC=33°,则∠DAE的度数为
72
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=BC,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,BD′=
5
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D点是BC的中点,DE⊥AB于E点,DF⊥AC于F点,则图中全等三角形共有
3
3
对.

查看答案和解析>>

同步练习册答案