精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AD、CE是两条高,连结DE,如果BE=2,EA=3,CE=4,在不添加任何辅助线和字母的条件下,请写出三个正确结论  (要求:分别为边的关系,角的关系,三角形相似的关系),并对其中三角形相似的结论给予证明.

边的关系                       ;
角的关系                       ;
三角形相似的关系                          .
证明:
边的关系:AD⊥BC,CE⊥AB   等
角的关系:∠ECB=∠DAB 
三角形相似的关系:△CEB∽△ADB
证明:∵ AD、CE是△ABC的两条高
∴∠CEB=∠ADB=900
∵ ∠B=∠B
∴△CEB∽△ADB
在Rt△AEC中,由勾股定理知,AC2=AE2+CE2,解得AC=5,所以AC=AB=AE+BE=5,∠CAB=∠B;因为AD、CE是两条高,所以∠AEC=∠ADC=90°,即点A、C、D、E是在以AC为直径的圆上,根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角知,有∠DEB=∠ACB,∠BDE=∠BAC,得△BED∽△BCA.【题型】解答题
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角.
(1)填空:
①如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为                        );
②如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为           
(2)如图3,分别以锐角三角形的三边为边向外作正方形,点分别是这三个正方形的对角线交点,试分别利用之间的关系,运用旋转相似变换的知识说明线段之间的关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M.

(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=8, AC=6, 点D在AC上,AD=2,试在AB上画出点E,使得△ADE和△ABC相似,并求出AE的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,EF//BC分别交边两 点,若AE=2,BE=4,则△AEF与 △ABC的面积比为 ___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,△ABC中,E、F、D分别是边AB、AC、BC上的点,且满足,则 △EFD与△ABC的面积比为【   】

A.            B.              C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小明晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,从C处继续往前走2米到达E处时,测得影子EF的长为2米,B、C、D、E、F在同一条直线上,已知小明的身高是1.6米,求路灯A的高度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)(3分)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);
(2)(3分)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD∶GC∶EB;
(3)(2分)把图(2)中的正方形都换成矩形,如图(3),且已知DA∶AB=HA∶AE=m: n,此时HD∶GC∶EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

,若,则的度数是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案