精英家教网 > 初中数学 > 题目详情
在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为______.
∵在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,这6个图形出现的机会相同,6个图形中既是轴对称图形又是中心对称图形的有正方形,矩形、正六边形三个.
∴任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为
3
6
=
1
2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
1
6
x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?精英家教网若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点A在x轴的精英家教网正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;
(2)当B′E∥y轴时,求点B′和点E的坐标;
(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)如图,在平面直角坐标系中,有一条直线l:y=-
3
3
x+4
与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.
(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标
3
,3)
3
,3)

(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为C,求C关于x的函数关系式;
(2)当B′E∥y轴时,求点B′和点E的坐标;
(3)在(2)的条件下,若抛物线y=-2x2+bx+c的对称轴是直线B′E,且经过原点O,求b、c的值;
(4)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
1
6
x2+bx+c
经过点A′和E时,求抛物线与x轴的交点的坐标.

查看答案和解析>>

同步练习册答案