如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是( )
A.正三角形
B.正方形
C.正五边形
D.正六边形
【答案】分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.
解答:解:正三角形的每个内角是60°,能整除360°,能密铺;
正方形的每个内角是90°,4个能密铺;
正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;
正六边形的每个内角是120°,3个能密铺.
故选C.
点评:本题考查一种正多边形的镶嵌应符合一个内角度数能整除360°.