【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
【答案】或.
【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.
(1) 当∠ONM=90°时,则DN⊥BC.
过点E作EF⊥BC,垂足为F.(如图)
∵在Rt△ABC中,∠A=90°,AB=AC,
∴∠C=45°,
∵BC=20,
∴在Rt△ABC中, ,
∵DE是△ABC的中位线,
∴,
∴在Rt△CFE中, , .
∵BM=3,BC=20,FC=5,
∴MF=BC-BM-FC=20-3-5=12.
∵EF=5,MF=12,
∴在Rt△MFE中, ,
∵DE是△ABC的中位线,BC=20,
∴,DE∥BC,
∴∠DEM=∠EMF,即∠DEO=∠EMF,
∴,
∴在Rt△ODE中, .
(2) 当∠MON=90°时,则DN⊥ME.
过点E作EF⊥BC,垂足为F.(如图)
∵EF=5,MF=12,
∴在Rt△MFE中, ,
∴在Rt△MFE中, ,
∵∠DEO=∠EMF,
∴,
∵DE=10,
∴在Rt△DOE中, .
综上所述,DO的长是或.
故本题应填写: 或.
科目:初中数学 来源: 题型:
【题目】如图,已知直线,分别是直线上的点.
(1)在图1中,判断和之间的数量关系,并证明你的结论;
(2)在图2中,请你直接写出和之间的数量关系(不需要证明);
(3)在图3中,平分,平分,且,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有( )
①A、B两地相距60千米;
②出发1小时,货车与小汽车相遇;
③小汽车的速度是货车速度的2倍;
④出发1.5小时,小汽车比货车多行驶了60千米.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, ,点是边的中点,过作于点,点是边上的一个动点, 与相交于点.当的值最小时, 与之间的数量关系是__________.
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017怀化,第10题,4分)如图,A,B两点在反比例函数的图象上,C,D两点在反比例函数的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则的值是( )
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸上的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣2,﹣1).
(1)把△ABC向左平移4格后得到△A1B1C1,画出△A1B 1C1并写出点A1的坐标;
(2)把△ABC绕点C按顺时针旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点是线段外,且,求证:点在线段的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A. 作的平分线交于点B. 过点作于点且
C. 取中点,连接D. 过点作,垂足为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com