精英家教网 > 初中数学 > 题目详情
18.先化简($\frac{3m+4}{{m}^{2}-1}$-$\frac{2}{m-1}$)÷$\frac{m+2}{{m}^{2}-2m+1}$,再从-2≤m≤1的取值范围内,选取一个你认为合适的m的整数值代入求值.

分析 先化简题目中的式子,然后再从-2≤m≤1中,选取一个合适的m的整数值代入求值即可解答本题,注意m不等于-2、-1、1.

解答 解:($\frac{3m+4}{{m}^{2}-1}$-$\frac{2}{m-1}$)÷$\frac{m+2}{{m}^{2}-2m+1}$
=$\frac{3m+4-2(m+1)}{(m+1)(m-1)}×\frac{(m-1)^{2}}{m+2}$
=$\frac{m+2}{(m+1)(m-1)}×\frac{(m-1)^{2}}{m+2}$
=$\frac{m-1}{m+1}$,
当m=0时,原式=$\frac{0-1}{0+1}=-1$.

点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.画△ABC,使其两边为已知线段a、b,夹角为β.(要求:用尺规作图,写出己知,求作;保留作图痕迹;不在已知的线、角上作图;不写作法).
已知:
求作:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先阅读下面的解题过程,然后再解答:
形如$\sqrt{m±2\sqrt{n}}$的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即${({\sqrt{a}})^2}+{({\sqrt{b}})^2}$=m,$\sqrt{a}•\sqrt{b}=\sqrt{n}$,那么便有:$\sqrt{m±2\sqrt{n}}=\sqrt{{{({\sqrt{a}±\sqrt{b}})}^2}}=\sqrt{a}±\sqrt{b}({a>b})$
根据上述方法化简:
(1)$\sqrt{13-2\sqrt{42}}$.
(2)$\sqrt{7+4\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在△ABC中,点D为AB边上一点,BD=2AD,点E为CD的中点,若S△ADE=2,则S△ABC=12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
①-22+30-(-$\frac{1}{2}$)-1
②a2•a4+(a23

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图1,过三角形ABC的顶点B画直线BE∥AC,过点C画AB的垂线段CF.
(2)如图2,在方格中平移三角形ABC,使点A移到点M,点B,C应移动到什么位置?再将A由点M移到点N?分别画出两次平移后的三角形. 
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,△ABC和△DBC都是边长为2的等边三角形.
(1)以图1中的某个点为旋转中心,旋转△DBC,就能使△DBC与△ABC重合,则满足题意的点为:B点、C点BC的中点.(写出符合条件的所有点);
(2)将△DBC沿BC方向平移得到△D1B1C1,如图2、图3所示,则四边形ABD1C1是平行四边形吗?证明你的结论;
(3)在(2)的条件下,若四边形ABD1C1为矩形,求 BB1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;
(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,我们把先作正方形ABCD的内切圆,再作这个内切圆的内接正方形A1B1C1D1.称为第一次数学操作,解下列,作正方形A1B1C1D1的内切圆,再作这个内切圆的内接正方形A2B2C2D2,称为第二次数学操作,按此规律如此下去,…,当完成第n次数学操作后,得到正方形AnBnCnDn,则$\frac{{A}_{n}{B}_{n}}{AB}$的值为(  )
A.($\frac{\sqrt{2}}{2}$)nB.($\frac{1}{2}$)nC.($\frac{\sqrt{3}}{2}$)nD.($\frac{3}{4}$)n

查看答案和解析>>

同步练习册答案