精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=
m
x
(x>0)
的图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点
①求反比例函数解析式;
②通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
③对于一次函数y=kx+3-kx(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)
(1)∵四边形ABCD是平行四边形,
∴AD=BC,
∵B(3,1),C(3,3),
∴BC⊥x轴,AD=BC=2,
而A点坐标为(1,0),
∴点D的坐标为(1,2).
∵反比例函数y=
m
x
(x>0)的函数图象经过点D(1,2),
∴2=
m
1

∴m=2,
∴反比例函数的解析式为y=
2
x


(2)当x=3时,y=kx+3-3k=3k+3-3k=3,
∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;

(3)设点P的横坐标为a,
∵一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,
∴k>0,P点的纵坐标要小于3,横坐标要小于3,
当纵坐标小于3时,∵y=
2
x
,∴
2
a
<3,解得:a>
2
3

则a的范围为
2
3
<a<3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正比例函数y=kx的图象与反比例函数y=
1
x
的图象相交于A、B两点,且A的坐标为(1,1).
(1)求正比例函数的解析式;
(2)已知M,N是y轴上的点,若四边形AMBN是矩形,求M、N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
2
x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知y与x的部分取值满足下表:
试猜想y与x的函数关系可能是你们学过的哪类函数,并写出这个函数的解析式.(不要求写x的取值范围):______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=
k
x
的图象上,点D的坐标为(0,-2).
(1)求反比例函数的解析式;
(2)若过B,D的直线与x轴交于点C,求sin∠DCO的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面内,函数y=
m
x
(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)求出反比例函数解析式;
(2)若四边形ABCD的面积为4,求点B的坐标;
(3)在(2)的条件下请在图上连接OA,OB.并求出△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为(  )
A.-3B.-4C.-
3
D.-2
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,平行四边形AOBC中,对角线交于点E,双曲线y=
k
x
(k>0)经过A、E两点,若平行四边形AOBC的面积为24,则k的值是(  )
A.6B.7.5C.8D.9

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数的图象过点A(-2,4).
(1)这个反比例函数图象分布在哪些象限?y随x的增大而如何变化?
(2)点B(4,-2),C(6,-
4
3
)和D(2
2
,-3
2
)哪些点在图象上?
(3)画出这个函数的图象.

查看答案和解析>>

同步练习册答案