分析 (1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;
(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.
解答 解:(1)作AE、BF分别垂直于x轴,垂足为E、F.
∵△AOE∽△BOF,又$\frac{OA}{OB}$=$\frac{1}{3}$,
∴$\frac{OA}{OB}$=$\frac{OE}{OF}$=$\frac{EA}{FB}$=$\frac{1}{3}$.
由点A在函数y=$\frac{1}{x}$的图象上,
设A的坐标是(m,$\frac{1}{m}$),
∴$\frac{OE}{OF}$=$\frac{m}{OF}$=$\frac{1}{3}$,$\frac{EA}{FB}$=$\frac{\frac{1}{m}}{FB}$=$\frac{1}{3}$,
∴OF=3m,BF=$\frac{3}{m}$,即B的坐标是(3m,$\frac{3}{m}$).
又点B在y=$\frac{k}{m}$的图象上,
∴$\frac{3}{m}$=$\frac{k}{3m}$,
解得k=9,
则反比例函数y=$\frac{k}{x}$的表达式是y=$\frac{9}{x}$;
(2)由(1)可知,A(m,$\frac{1}{m}$),B(3m,$\frac{3}{m}$),
又已知过A作x轴的平行线交y=$\frac{9}{x}$的图象于点C.
∴C的纵坐标是$\frac{1}{m}$,
把y=$\frac{1}{m}$代入y=$\frac{9}{x}$得x=9m,
∴C的坐标是(9m,$\frac{1}{m}$),
∴AC=9m-m=8m.
∴S△ABC=$\frac{1}{2}$×8m×$\frac{2}{m}$=8.
点评 本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m表示出个点的坐标是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com