精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,AC=8cm,BC=6cm,P点在BC上,从B点到C点运动不包括 C,点 P运动的速度为1cm/s;Q点在AC上从C点运动到A不包括A,速度为2cm/s,若点 P、Q 分别从B、C 同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.

(1) t 为何值时,P、Q 两点的距离为 4cm?

(2)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?

【答案】(1) 2;(2) 3,15cm2

【解析】

(1)根据勾股定理PC2+CQ2=PQ2,便可求出经过2s后,P、Q两点的距离为4cm;(2)根据三角形的面积公式SPCQ=×PC×CQ以及二次函数最值便可求出t=1.75s时△PCQ的面积最大,进而求出四边形BPQA的面积最小值.

:(1)∵在Rt△ABC中,AC=8cm,BC=6cm,
∴AB=10cm,
设经过ts后,P、Q两点的距离为4cm,
ts后,PC=6-t cm,CQ=2t cm,
根据勾股定理可知PC2+CQ2=PQ2
代入数据(6-t)2+(2t)2=(42
解得t=2t=
t2时,P、Q两点的距离为4cm;

(2)设经过ts后,△PCQ的面积最大,则此时四边形BPQA的面积最小,
ts后,PC=6-tcm,CQ=2t cm,
SPCQ=×PC×CQ=×(6-t)×2t=-t2+6t
t=-时,即t=3s时,△PCQ的面积最大,
SPCQ=

×PC×CQ=×(6-3)×6=9(cm2),
∴四边形BPQA的面积最小值为:SABC-SPCQ最大=×6×8-9=15(cm2),
当点P运动3秒时,四边形BPQA的面积最小为:15cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=ACAHBC,点EAH上一点,延长AH至点F,使FH=EH.

(1)求证:四边形EBFC是菱形;

(2)如果∠BAC=ECF,求证:ACCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,EAC边上的一点,且AE=AB∠BAC=2∠CBE,以AB为直径作⊙OAC于点D,交BE于点F

1)求证:BC⊙O的切线;

2)若AB=8BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100

(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】

(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AD平分∠BAC,交BC于点D,点OAB上,⊙O经过AD两点,交AC于点E,交AB于点F

1)求证:BC是⊙O的切线;

2)若⊙O的半径是2cmE是弧AD的中点,求阴影部分的面积(结果保留π和根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yaxaya≠0)在同一直角坐标系中的图象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(数学概念)

若等边三角形的三个顶点DEF分别在ABC的三条边上我们称等边三角形DEFABC的内接正三角形

(概念辨析)

(1)下列图中DEF均为等边三角形则满足DEFABC的内接正三角形的是

A.    B.

C.

(操作验证)

(2)如图.在ABC,∠B=60°,D为边AB上一定点BCBD),DEDBEM平分DEC交边AC于点MDME的外接圆与边BC的另一个交点为N

求证DMNABC的内接正三角形

(知识应用)

(3)如图.在ABC,∠B=60°,∠A=45°,BC=2,D是边AB上的动点若边BC上存在一点E使得以DE为边的等边三角形DEFABC的内接正三角形.设DEF的外接圆O与边BC的另一个交点为KDK的最大值为 最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC,∠C=90°,BD是角平分线OAB以点O为圆心OB为半径的圆经过点DBC于点E

(1)求证ACO的切线

(2)OB=10,CD=求图中阴影部分的面积

查看答案和解析>>

同步练习册答案