精英家教网 > 初中数学 > 题目详情

【题目】如图,以AB为直径的半圆O内有一条弦AC,点E是弦AC的中点,连接BE,并延长交半圆O于点D,若OB2OE1,则∠CDE的度数是_______________.

【答案】30°

【解析】

连接BC.构建∠CAB与∠CDE所对的圆周角.根据三角形的中位线定理,求得AEO是直角三角形,然后在直角三角形AEO中由30°角所对的直角边是斜边的一半,求得∠CAB=30°;最后根据圆周角定理求得∠CDE=30°

连接BC

AB是直径,

∴∠ACB=90°

E是弦AC的中点,O是直径AB的中点,

OEBC

OEAC

OB=2OE=1

AO=2

AO=2OE

∴∠CAB=30°30°角所对的直角边是斜边的一半);

∴∠CDE=30°(同弧所对的圆周角相等);

故答案是:30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,以AB为直径的圆交AC于点D,EBC的中点,连接DE.

1)求证:DE的切线;

2)设的半径为r,证明

3)若,求AD之长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD,过点ABC的垂线,垂足为点E,且满足AEEC,过点CAB的垂线,垂足为点F,交AE于点G,连接BG

1)如图1,若ACCD4,求BC的长度;

2)如图2AC上一点Q,连接EQ,在△QEC内取一点,连接QHEH,过点HAC的垂线,垂足为点P,若QHEH,∠QEH45°.求证:AQ2HP

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C1yax24ax5的开口向上.

1)当a1时,求抛物线与x轴的交点坐标;

2)试说明抛物线C1一定经过两个定点,并求出这两个定点的坐标;

3)将抛物线C1沿(2)所求的两个定点所在直线翻折,得到抛物线C2

①写出抛物线C2的表达式;

②当抛物线C2的顶点到x轴的距离为2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某果农在其承包的果园中种植了60棵桔子树,每棵桔子树的产量是100kg,果农想增加桔子树的棵数来增产,但增加果树会导致每棵树的光照减少,使得单棵果树产量减少,试验发现每增加1棵桔子树,单棵桔子树的产量减少0.5kg.

(1)在投入成本最低的情况下,增加多少棵桔子树时,可以使果园总产量达到6650kg

(2)设增加x棵桔子树,考虑实际增加桔子树的情况,10≤x≤40,请你计算一下,果园总产量最多为多少kg,最少为多少kg

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC90o,以BC为直径的半圆⊙OAC于点D,点EAB的中点,连接DE并延长,交CB延长线于点F.

(1)判断直线DF与⊙O的位置关系,并说明理由;

(2)CF8DF4,求⊙O的半径和AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1y2x32+1和抛物线y2y=﹣2x28x3,若无论k取何值,直线ykx+km+n被两条抛物线所截的两条线段都保持相等,则m_____n_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是(

 操作组

管理组 

研发组 

 日工资(元/人)

 260

 280

 300

人数(人) 

 4

 4

 4

A.团队平均日工资不变B.团队日工资的方差不变

C.团队日工资的中位数不变D.团队日工资的极差不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有三张形状大小完全相同的牌,正面分别标有数字235.将三张牌背面朝上,洗匀后放在桌子上.

1)从中任取一张,求取到偶数的概率.

2)甲、乙两人进行摸牌游戏.

①甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;

②若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

同步练习册答案