分析 由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.
解答 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠1=∠2,
∵BF=DE,
∴BF+BD=DE+BD,
即DF=BE,
在△ADF和△CBE中,
$\left\{\begin{array}{l}{AD=BC}&{\;}\\{∠1=∠2}&{\;}\\{DF=BE}&{\;}\end{array}\right.$,
∴△ADF≌△CBE(SAS),
∴∠AFD=∠CEB,
∴AF∥CE.
点评 本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
关注情况 | 频数 | 频率 |
A.高度关注 | M | 0.1 |
B.一般关注 | 100 | 0.5 |
C.不关注 | 30 | N |
D.不知道 | 50 | 0.25 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -4 | B. | 4 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com