精英家教网 > 初中数学 > 题目详情
(2007•芜湖)阅读以下材料,并解答以下问题.
“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.
(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?
(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?
(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?

【答案】分析:(1)根据完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,则到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.从而计算出从A点到达其余各交叉点的走法数;
(2)此题有两种计算方法:方法一是先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它;方法二是删除与C点紧相连的线段,运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法;
(3)结合(1)和(2)的结论,即可求得概率.
解答:解:(1)∵完成从A点到B点必须向北走,或向东走,
∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和,
故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1.
答:从A点到B点的走法共有35种.

(2)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C的走法数.
完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C点到B点,
使用分类加法计数原理,算出从A点到C点的走法是3种,见图2;算出从C点到B点的走法为6种,见图3,再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种.
∴从A点到B点但不经过C点的走法数为35-18=17种.

方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段,运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4,
∴从A点到B点并禁止经过C点的走法数为35-18=17种.

(3)P(顺利开车到达B点)=
答:任选一种走法,顺利开车到达B点的概率是
点评:能够根据题意中的方法进行计算,掌握这两种不同的计算方法可以使此类题的计算过程更简便.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2007年安徽省芜湖市中考数学试卷(解析版) 题型:解答题

(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《命题与证明》(01)(解析版) 题型:解答题

(2007•芜湖)阅读以下材料,并解答以下问题.
“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.
(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?
(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?
(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?

查看答案和解析>>

同步练习册答案