精英家教网 > 初中数学 > 题目详情

【题目】如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )

A. B. C. D.

【答案】B

【解析】

连接OBAC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.

连接OBAC交于点D,如图所示:

∵圆的半径为4,
OB=OA=OC=4,
又四边形OABC是菱形,
OBAC,OD=OB=2,
RtCOD中利用勾股定理可知:CD=,

sinCOD=

∴∠COD=60°,AOC=2COD=120°,
S菱形ABCO=,

S扇形=,

则图中阴影部分面积为S扇形AOC-S菱形ABCO=.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图正方形ABCD的边长为4,点EAB上的一点,将BCE沿CE折叠至FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,将正方形ABCD沿AF折叠,使点B落在点E处.已知AB=4cm,BF=1cm,则点E到CD的距离为________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正确结论的个数为( ).

A.4个 B.3个 C.2个 D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),

(1)求出二次函数的表达式;

(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.

(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,

①求出直线BC的函数表达式(用a表示);

②如果点B是整点,求证:OAB的面积是偶数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙ORtABC的斜边AB相切于点D,与直角边AC相交于EF两点,连结DE,已知∠B=30°O的半径为12,弧DE的长度为

1)求证:DEBC

2)若AF=CE,求线段BC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,设两数 ( 是常数,).若函数的图象过,且

(1)的值:

(2)将函数的图象向上平移个单位,平移后的函数图象与函数的图象交于直线上的同一点,求的值;

(3)已知点 (为常数)在函数的图象上,关于轴的对称点为,函数的图象经过点,当时,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以ABC的边AB为直径画⊙O,交AC于点D,半径OEBD,连接BEDEBD,设BEAC于点F,若∠DEBDBC

(1)求证:BC是⊙O的切线;

(2)若BFBC=2,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案