精英家教网 > 初中数学 > 题目详情
已知,二次函数的图象如图所示.

(1)若二次函数的对称轴方程为,求二次函数的解析式;
(2)已知一次函数,点x轴上的一个动点.若在(1)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数的图象于点N.若只有当1<m时,点M位于点N的上方,求这个一次函数的解析式;
(3)若一元二次方程有实数根,请你构造恰当的函数,根据图象直接写出的最大值.
(1)(2)(3).

试题分析:解:(1) 二次函数的对称轴方程为,由二次函数的图象可知
二次函数的顶点坐标为(1,-3),二次函数与轴的交点坐标为
于是得到方程组                  
解方程得
二次函数的解析式为.                     
(2)由(1)得二次函数解析式为
依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为
由此可得交点坐标为.              
将交点坐标分别代入一次函数解析式中,

解得
∴一次函数的解析式为.     
(3).                                     

点评:本题难度中等,主要考查学生对二次函数和一次函数知识点的掌握。为中考常考题型,学生要牢固掌握各性质概念。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图像.

(1)从图像知,通话2分钟需付的电话费是     元;
(2)当t≥3时求出该图像的解析式(写出求解过程);
(3)通话7分钟需付的电话费是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角三角形系。

(1)求直线AC的解析式;
(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s)。
①当t为何值时,ΔABP是直角三角形;
②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动。试写出ΔBPQ的面积S关于t的函数解析式,并写出自变量的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

湖州市八里店镇戴山村生产一种绿色蔬菜,直接销售每吨利润可达2000元;若经粗加工后再销售,每吨利润可达4500元;若经精加工后销售,每吨利润涨到7500元。
当地一家公司收获这种蔬菜140吨,该公司的生产能力是:如果蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但这两种加工方式不能同时进行,受季节条件限制公司必须用15天时间将这批蔬菜全部销售或加工完毕,该公司现有如下两种方案:
方案1:将蔬菜进行精加工,剩下的可直接销售;
方案2:将一部分蔬菜进行精加工,其余进行粗加工,并恰好用15天完成;
试通过分析运算,你认为选择哪种方案获利较多?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
 
A
B
成本(元)
50
35
利润(元)
20
15
(1)请写出y关于x的关系式;
(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?
(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

宁波滨海水产城一养殖专业户陈某承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:

(1)2011年,陈某养殖甲鱼20亩,桂鱼10亩.求陈某这一年共收益多少万元?(收益=销售额-成本)
(2)2012年,陈某继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求陈某原定的运输车辆每次可装载饲料多少kg?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A、B两地的路程为240.某经销商每天都要用汽车或火车将保鲜品一次性由A地运往B地.受各种因素限制,下周只能采取用汽车和火车中的一种进行运输且需提前预定.现有货运收费项目及收费标准表、行驶路/与行驶时间/s的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
运输工具
运输费单价元/(·
冷藏费单价元/(·h)
固定费用元/次
汽车
2
5
200
火车
1.6
5
2280
(1)汽车的速度为         /h,火车的速度为        /h;
(2)设每天用汽车和火车运输的总费用分别为/元和/元,分别求的函数关系式(不必写出的取值范围),及为何值时
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输费用较省?
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出之间的函数关系式;
(2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,右表是试验的相关数据;请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

从1,2,3,4,5这五个数中,任取两个数),构成函数,并使这两个函数图象的交点在直线的右侧,则这样的有序数对()共有( )
A.7对B.9对C.11对D.13对

查看答案和解析>>

同步练习册答案