精英家教网 > 初中数学 > 题目详情
11.(1)计算:($\frac{1}{2}$)-1-$\root{3}{27}$-(π-2017)0+$\sqrt{3}$tan30°
(2)解方程:$\frac{x-3}{x-2}$+1=$\frac{3}{x-2}$.

分析 (1)原式利用零指数幂、负整数指数幂法则,立方根定义,以及特殊角的三角函数值计算即可得到结果;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:(1)原式=2-3-1+1=-1;   

(2)去分母得:x-3+x-2=3,
解得:x=4,
经检验x=4是分式方程的解.

点评 此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.计算:$[(-\frac{1}{3})^{501}]^{4}×{3}^{2003}$=$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示,BD是⊙O的切线,AE是⊙O的直径,AD是一条非直径的弦,过点B作BC⊥AB,BC与AD的延长线相交于点C,
(1)若BE=$\frac{1}{2}$AE,求∠EAD的度数;
(2)求证:AC•AD=AB•AE;
(3)在(1)条件下,当BC=2时,求四边形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形ABCD是平行四边形.
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:
①作∠BAD的平分线,交CD于E,交BC的延长线于F;②连接BE;
(2)在(1)作出图形中,若∠F=45°,AB=8,DE=5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$\frac{{x}^{2}-6x+9}{{x}^{2}-9}$÷$\frac{x-3}{2}$,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:(2$\sqrt{2}$)2+2cos45?-($\frac{1}{2}$)-1-|1-$\sqrt{2}$|-(π-3.14)0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.半径为1的两圆放置位置如图所示,一圆的直径恰好是另一圆的切线,圆心均为切点,则阴影部分的面积为$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为了传承优秀传统文化,我县团委组织了一次全县有3000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分频数频率
50≤x<60100.05
 60≤x<70300.15
 70≤x<8040n
 80≤x<90m0.35
 90≤x≤100500.25
请根据所给信息,解答下列问题:
(1)m=70,n=0.2;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:
x-5-4-3-2-1
y-7.5-2.50.51.50.5
根据表格提供的信息,有下列结论:
①该抛物线的对称轴是直线x=-2;②该抛物线与y轴的交点坐标为(0,-2.5);③b2-4ac=0;④若点A(0.5,y1)是该抛物线上一点.则y1<-2.5.则所有正确的结论的序号是①②④.

查看答案和解析>>

同步练习册答案