精英家教网 > 初中数学 > 题目详情
(2013•连云港)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
分析:(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可.
(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.
解答:(1)证明:∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,
∴∠ABE=∠EBD=
1
2
∠ABD,∠CDF=
1
2
∠CDB,
∴∠ABE=∠CDF,
在△ABE和△CDF中
∠A=∠C
AB=CD
∠ABE=∠CDF

∴△ABE≌△CDF(ASA),
∴AE=CF,
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∴DE=BF,DE∥BF,
∴四边形BFDE为平行四边形;

(2)解:∵四边形BFDE为为菱形,
∴BE=ED,∠EBD=∠FBD=∠ABE,
∵四边形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴∠ABE=30°,
∵∠A=90°,AB=2,
∴AE=
2
3
=
2
3
3
,BE=2AE=
4
3
3

∴BC=AD=AE+ED=AE+BE=
2
3
3
+
4
3
3
=2
3
点评:本题考查了平行四边形的判定,菱形的性质,矩形的性质,含30度角的直角三角形性质的应用,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•连云港)计算a2•a4的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•连云港)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•连云港)在Rt△ABC中,∠C=90°,若sinA=
5
13
,则cosA的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•连云港)分解因式:4-x2=
(2-x)(2+x)
(2-x)(2+x)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•连云港)如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF∽△ACE?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案