【题目】某个体经营户销售同一型号的A、B两种品牌的服装,平均每月共销售60件,已知两种品牌的成本和利润如表所示,设平均每月的利润为y元,每月销售A品牌x件.
(1)写出y关于x的函数关系式.
(2)如果每月投入的成本不超过6500元,所获利润不少于2920元,不考虑其他因素,那么销售方案有哪几种?
(3)在(2)的条件下要使平均每月利润率最大,请直接写出A、B两种品牌的服装各销售多少件?
A | B | |
成本(元/件) | 120 | 85 |
利润(元/件) | 60 | 30 |
【答案】
(1)解:依题意,利润y=60x+30(60﹣x)=30x+1800
(2)解:依题意,得
,
解得 ≤x≤40,
∴x=38,39,40,
共有三种方案:①A:38,B:22②A:39,B:21③A:40,B:20
(3)解:∵利润y=30x+1800;
∴当x取最大值40时,月利润最大,
∴当A销售40件,B销售20件时,月利润最大
【解析】(1)依题意,B品牌每月销售(60﹣x)件,根据A、B品牌每件的利润,列函数关系式;(2)按照A、B两种产品的成本范围,利润范围,列不等式组求x的取值范围,再根据x为整数,确定销售方案;(3)根据函数关系式,直接求出月利润最大时,A、B两种产品的销售量.
科目:初中数学 来源: 题型:
【题目】如图,已知点为的角平分线上的一点,点在边上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边上取一点,使得,这时他发现与之间有一定的数量关系,请你写出与的数量关系__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△APB与△CDP均为等边三角形,且PA⊥PD,PA=PD.有下列三个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有 A、B 两点,所表示的有理数分别为 a、b,已知 AB=12,原点 O 是线段AB 上的一点,且 OA=2OB.
(1)求a,b;
(2)若动点 P,Q 分别从 A,B 同时出发,向右运动,点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,设运动时间为 t 秒,当点 P 与点 Q 重合时,P,Q 两点停止运动.
①当 t 为何值时,2OPOQ=4;
②当点 P 到达点 O 时,动点 M 从点 O 出发,以每秒 3 个单位长度的速度也向右运动,当点 M 追上点 Q 后立即返回,以同样的速度向点 P 运动,遇到点 P 后再立即返回,以同样的速度向点 Q 运动,如此往返,直到点 P,Q 停止时,点 M 也停止运动,求在此过程中点 M 行驶的总路程,并直接写出点 M 最后位置在数轴上所对应的有理数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李先生购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:米),解答下列问题:
(1)用含x的式子表示客厅的面积;
(2)用含x的式子表示地面总面积;
(3)已知客厅面积比厨房面积多12平方米,若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为点E、F.
(1)如图①,当点D在BC的什么位置时,DE=DF?并证明;
(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?请写出所有的全等三角形(不必证明);
(3)如图②,过点C作AB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.
(1)点C的坐标为: (用含m,n的式子表示);
(2)求证:BM=BN;
(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com