精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.
(1)求A、B两点的坐标;
(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.
(3)将△OAC沿直线AC翻折,点O的对应点为O'.
①若O'落在该抛物线的对称轴上,求实数a的值;
②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.

 
(1) A(2,0),B(4,0);(2) D(6,8);(3),不存在.

试题分析:
(1)令y=0,则x2-6x+8=0,
解得:x1=2,x2=4,
∴A(2,0),B(4,0)
(2)∵S△ABC=AB·OC=×2×8a=8,
∴a=1,C(0,8)
∵抛物线与圆均为轴对称图形,都关于直线x=3对称,
∴圆与抛物线第四个交点为D(6,8)
(3)①将△OAC沿直线AC翻折,点O的对应点O′落在对称轴x=3上,
∴AE=1,AO="2"
在Rt O′AE中,∠O′AM=60°
∴∠CAO=60°

∴a=
②过A点作AF⊥BC,E为垂足,
∴AF=2<AB,
即AF<OA
∴不论a取何值,O点的对应点O′总落在△ABC的外部
∴这样的整数a不存在.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线)将四边形ABCD面积二等分,求的值;
(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一条抛物线向左平移2个单位后得到了y=2x2的函数图象,则这条抛物线是(   )  
A.y=2x2+2B.y=2x2-2C.y=2(x-2)2D.y=2(x+2)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点.
(1)求证:∠CAO=∠CAD;
(2)求弦BD的长;
(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数与x轴交于A(1,0)、B(3,0)两点;二次函数的顶点为P.
(1)请直接写出:b=_______,c=___________;
(2)当∠APB=90°,求实数k的值;
(3)若直线与抛物线L2交于E,F两点,问线段EF的长度是否发生变化?如果不发生变化,请求出EF的长度;如果发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线可以由抛物线平移得到,则下列平移过程正确的是
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A.          B.
C.        D.

查看答案和解析>>

同步练习册答案