精英家教网 > 初中数学 > 题目详情
4.如图,在△ABC中,DE∥BC,AD=2BD,如果$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,那么$\overrightarrow{DE}$=$-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$.

分析 首先求出$\overrightarrow{BC}$=-$\overrightarrow{a}$+$\overrightarrow{b}$,再证明$\frac{DE}{BC}$=$\frac{2}{3}$,推出$\overrightarrow{DE}$=-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$即可.

解答 解:∵$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,
∴$\overrightarrow{BC}$=-$\overrightarrow{a}$+$\overrightarrow{b}$,
∵DE∥BC,
∴$\frac{DE}{BC}$=$\frac{AD}{AB}$,
∵AD=2BD,
∴$\frac{DE}{BC}$=$\frac{2}{3}$,
∴$\overrightarrow{DE}$=-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$.

点评 本题考查平面向量、平行线分线段成比例定理等知识,解题的关键是掌握平面向量的加法法则(三角形法则),熟练中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,已知一次函数y1=$\frac{4}{3}$x-4与反比例函数y2=$\frac{k}{x}$的图象在第一象限相交于点A(6,n),与x轴相交于点B.
(1)填空:n的值为4,k的值为24;当y2≥-4时,x的取值范围是x≤-6或x>0;
(2)以AB为边作菱形ABCD,使点C在点B右侧的x轴上,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,要测量旗杆AB的高度,在地面C点处测得旗杆顶部A点的仰角为45°,从C点向外走2米到D点处,(B、C、D三点在同一直线上)测得旗杆顶部A点的仰角为37°,求旗杆AB的高度.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=110厘米,∠BAC=37°,垂直支架CD=57厘米,DE是另一根辅助支架,且∠CED=60°.

(1)求辅助支架DE长度;(结果保留根号)
(2)求水箱半径OD的长度.(结果精确到1厘米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,A是∠MON边OM上一点,AE∥ON.
(1)尺规作图,作∠MON的角平分线OB,交AE于点B;(保留作图痕迹,不写作法)
(2)过点B画OB的垂线,分别交OM,ON于点C,D,求证:AB=$\frac{1}{2}$OC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在△ABC中,BD平分∠ABC,CE平分∠ACB,过点A分别作BD,CE的垂线,垂足分别为点M,N,连接MN.求证:MN=$\frac{1}{2}(AB+AC-BC)$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,延长BA和CD分别与EF的延长线交于K,H.求证:∠BKE=∠CHE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知点A(0,2)、B(2$\sqrt{3}$,2)、C(0,4),过点C向右做平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在左侧作等边△APQ,连接PB、BA.
(1)当AB∥PQ时,点P的横坐标是$\frac{2\sqrt{3}}{3}$;
(2)当BP∥QA时,点P的横坐标是0或2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:($\frac{1}{2}$)-1+tan60°+|-$\sqrt{3}$|-$\sqrt{2}$.

查看答案和解析>>

同步练习册答案