ÒÑÖª£ºÕý·½ÐÎOABCµÄ±ßOC¡¢OA·Ö±ðÔÚx¡¢yÖáµÄÕý°ëÖáÉÏ£¬ÉèµãB£¨4£¬4£©£¬µãP£¨t£¬0£©ÊÇxÖáÉÏÒ»¶¯µã£¬¹ýµãO×÷OH¡ÍAPÓÚµãH£¬Ö±ÏßOH½»Ö±ÏßBCÓÚµãD£¬Á¬AD£®
£¨1£©Èçͼ1£¬µ±µãPÔÚÏ߶ÎOCÉÏʱ£¬ÇóÖ¤£ºOP=CD£»
£¨2£©ÔÚµãPÔ˶¯¹ý³ÌÖУ¬¡÷AOPÓëÒÔA¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÏàËÆʱ£¬ÇótµÄÖµ£»
£¨3£©Èçͼ2£¬Å×ÎïÏßy=-
1
6
x2+
2
3
x+4ÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃÒÔP¡¢D¡¢Q¡¢CΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ö¤OP=CD£¬¿ÉÒÔÖ¤Ã÷ËüÃÇËùÔÚµÄÈý½ÇÐÎÈ«µÈ£¬¼´Ö¤Ã÷£º¡÷AOP¡Õ¡÷OCD£»ÒÑÖªµÄÌõ¼þÓУº¡ÏAOP=¡ÏOCD=90¡ã£¬OA=OC=4£¬Ö»ÐèÔÙÕÒ³öÒ»×é¶ÔÓ¦½ÇÏàµÈ¼´¿É£¬Í¨¹ýͼʾ¿ÉÒÔ·¢ÏÖ¡ÏOAP¡¢¡ÏHAPÊÇͬ½ÇµÄÓà½Ç£¬ÕâÁ½¸ö½ÇÏàµÈ£¬ÄÇô֤Ã÷Èý½ÇÐÎÈ«µÈµÄÈ«²¿Ìõ¼þ¶¼Òѵóö£¬Ôò½áÂÛ¿ÉÖ¤£®
£¨2£©µãPÔÚxÖáÉÏÔ˶¯£¬ÄÇô¾ÍÐè·ÖÈýÖÖÇé¿öÌÖÂÛ£º
¢ÙµãPÔÚxÖḺ°ëÖáÉÏ£»¿ÉÒÔÑÓÐø£¨1£©µÄ½âÌâ˼·£¬ÏÈÖ¤Ã÷¡÷AOP¡¢¡÷OCDÈ«µÈ£¬ÄÇôµÃµ½µÄÌõ¼þÊÇOP=CD£¬È»ºóÓÃt±íʾOP¡¢BDµÄ³¤£¬ÔÙ¸ù¾Ý¸ø³öµÄÏàËÆÈý½ÇÐεõ½µÄ±ÈÀýÏ߶Σ¬ÁеÈʽÇó³ö´ËʱtµÄÖµ£¬Òª×¢ÒâtµÄÕý¸ºÖµµÄÅжϣ»
¢ÚµãPÔÚÏ߶ÎOCÉÏʱ£»ÓÉÓÚOP¡¢CD¶¼Ð¡ÓÚµÈÓÚÕý·½Ðεı߳¤£¨¼´OA¡¢AB£©£¬ËùÒÔÖ»ÓÐOP=BDʱ£¬¸ø³öµÄÁ½¸öÈý½ÇÐβÅÓпÉÄÜÏàËÆ£¨´ËʱÊÇÈ«µÈ£©£¬¿É¾Ý´ËÇó³ötµÄÖµ£»
¢ÛµãPÔÚµãCµÄÓÒ²àʱ£»·½·¨Í¬¢Ù£®
£¨3£©ÕâµÀÌâÒª·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢ÙÏ߶ÎPCΪƽÐÐËıßÐεĶԽÇÏߣ¬ÄÇôµãQ¡¢D¹ØÓÚPCµÄÖеã¶Ô³Æ£¬¼´Á½µãµÄ×Ý×ø±ê»¥ÎªÏà·´Êý£¬¶øQP¡ÎCD£¬¼´Q¡¢PµÄºá×ø±êÏàͬ£¬ÄÇôÏÈÓÃt±íʾ³öQµãµÄ×ø±ê£¬´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¼´¿ÉÈ·¶¨tµÄÖµ£»
¢ÚÏ߶ÎPCΪƽÐÐËıßÐεıߣ»ÏÈÓÃt±íʾ³öPCµÄ³¤£¬°ÑµãDÏò×ó»òÏòÓÒƽÒÆPC³¤¸öµ¥Î»¾ÍÄܱí´ï³öµãQµÄ×ø±ê£¬´úÈëÅ×ÎïÏß½âÎöʽºó¼´¿ÉµÃµ½tµÄÖµ£®
½â´ð£º£¨1£©Ö¤Ã÷£º¡ßOD¡ÍAH£¬
¡à¡ÏOAP=¡ÏDAC=90¡ã-¡ÏAOD£»
Õý·½ÐÎOABCÖУ¬OA=OC=4£¬¡ÏAOP=¡ÏOCD=90¡ã£¬¼´£º
¡ß
OA=OC
¡ÏOAP=¡ÏCOD
¡ÏAOP=¡ÏOCD
£¬
¡à¡÷AOP¡Õ¡÷OCD
¡àOP=CD£®

£¨2£©½â£º¢ÙµãPÔÚxÖḺ°ëÖáÉÏʱ£¬P£¨t£¬0£©£¬ÇÒt£¼0£¬Èçͼ¢Ù£»
¡ßÔÚRt¡÷AOPÖУ¬OH¡ÍAP£¬
¡à¡ÏPOH=¡ÏPAO=90¡ã-¡ÏAPO£»
ÓÖ¡ß¡ÏPOH=¡ÏCOD£¬
¡à¡ÏCOD=¡ÏPAO£»
ÔÚ¡÷AOPÓë¡÷OCDÖУ¬
¡ß
OA=OC
¡ÏPAO=¡ÏCOD
¡ÏAOP=¡ÏOCD
£¬
¡à¡÷AOP¡Õ¡÷OCD£»
¡àOP=CD=-t£¬Ôò£ºBD=BC+CD=4-t£»
Èô¡÷AOPÓëÒÔA¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬ÔòÓУº
OP
AB
=
OA
BD
£¬µÃ£º
-t
4
=
4
4-t

½âµÃ£ºt=2-2
5
»òt=2+2
5
£¨ÕýÖµÉáÈ¥£©£»
¢Úµ±µãPÔÚÏ߶ÎOCÉÏʱ£¬P£¨t£¬0£©£¬0£¼t¡Ü4£¬Èçͼ¢Ú£»
ÒòΪOP£¼OA¡¢BD£¼AB¡¢OA=AB£¬
Èô¡÷AOPÓëÒÔA¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬ÄÇôÓУº
OP
OA
=
BD
AB
£¬ËùÒÔOP=BD£¬¼´£º
t=4-t£¬t=2£»
¢Ûµ±µãPÔÚµãCÓÒ²àʱ£¬P£¨t£¬0£©£¬t£¾4£¬Èçͼ¢Û£»
ͬ¢Ù¿ÉÇóµÃt=2+2
5
£»
×ÛÉÏ£¬t1=2£¬t2=2+2
5
£¬t3=2-2
5
£®

£¨3£©½â£º¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄµãQ£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢ÙPCΪƽÐÐËıßÐεĶԽÇÏߣ¬ÔòQP¡ÎCD£¬ÇÒQP=CD£»
ÈôP£¨t£¬0£©¡¢D£¨4£¬t£©£¬ÔòQ£¨t£¬-t£©£¬´úÈëÅ×ÎïÏßy=-
1
6
x2+
2
3
x+4ÖУ¬µÃ£º
-
1
6
t2+
2
3
t+4=-t£¬¼´£ºt2-10t-24=0£¬
½âµÃ£ºt1=-2£¬t2=12£»
¢ÚPCΪƽÐÐËıßÐεıߣ¬ÔòDQ¡ÎPC£¬ÇÒAD=PC£»
ÈôP£¨t£¬0£©¡¢D£¨4£¬t£©£¬Ôò PC=QD=|t-4|£¬Q£¨t£¬t£©»ò£¨8-t£¬t£©£»
Q£¨t£¬t£©Ê±£¬t=-
1
6
t2+
2
3
t+4£¬¼´£ºt2+2t-24=0£¬
½âµÃ t1=4£¨Éᣩ¡¢t2=-6£»
Q£¨8-t£¬t£©Ê±£¬t=-
1
6
£¨8-t£©2+
2
3
£¨8-t£©+4£¬¼´£ºt2-6t+8=0£¬
½âµÃ t1=4£¨Éᣩ¡¢t2=2£®
×ÛÉÏ¿ÉÖª£¬t1=2£¬t2=12£¬t3=-6£¬t4=-2£®
¡à´æÔÚµãQ£¬Ê¹µÃÒÔP¡¢D¡¢Q¡¢CΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ®
µãÆÀ£º´ËÌâÊǶþ´Îº¯ÊýÓ뼸ºÎµÄ×ÛºÏÌ⣬Ö÷ÒªÉæ¼°ÁËÕý·½ÐεÄÐÔÖÊ¡¢È«µÈÈý½ÇÐÎÓëÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÌصãµÈÖصã֪ʶ£»ÌâÄ¿½âÌâµÄ˼·²¢²»¸´ÔÓ£¬µ«ÄѶÈÔÚÓÚÉæ¼°µÄÇé¿öÌ«¶à£¬ÐèÒª·ÖÇé¿öÖðÒ»½øÐÐÌÖÂÛ£¬ÈÝÒש½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖª£ºÕý·½ÐÎOABCµÄÃæ»ýΪ9£¬µãOΪ×ø±êÔ­µã£¬µãAÔÚxÖáÉÏ£¬µãCÔÚyÖáÉÏ£¬µãBÔÚº¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉϵÄÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬²¢Éè¾ØÐÎOEPFÖкÍÕý·½ÐÎOABC²»Öغϲ¿·ÖµÄÃæ»ýΪS£®
£¨1£©ÇóµãB×ø±êºÍkµÄÖµ£®
£¨2£©µ±S=
9
2
ʱ£¬ÇóPµÄ×ø±ê£®
£¨3£©Ð´³öS¹ØÓÚmµÄº¯Êý¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¨1£©£¬ÒÑÖª£ºÕý·½ÐÎOABC£¬A¡¢C·Ö±ðÔÚxÖá¡¢yÖáÉÏ£¬µãBÔÚµÚÒ»ÏóÏÞ£»½«Ò»Ö±½ÇÈý½Ç°åµÄÖ±½Ç¶¥µãÖÃÓÚµãB´¦£¬ÉèÁ½Ö±½Ç±ß£¨×ã¹»³¤£©·Ö±ð½»xÖá¡¢yÖáÓÚµãE¡¢F£¬Á¬½ÓEF£®
£¨1£©ÅжÏCFÓëAEµÄ´óС¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©ÒÑÖªF£¨0£¬6£©£¬EF=10£¬ÇóµãBµÄ×ø±ê£®
£¨3£©Èçͼ£¨2£©£¬ÒÑÖªÕý·½ÐÎOABCµÄ±ß³¤Îª6£¬Èô½«Èý½Ç°åµÄÖ±½Ç¶¥µãÒƵ½BCµÄÖеãM´¦£¬ÐýתÈý½Ç°å£»µ±µãFÔÚOC±ßÉÏʱ£¬ÉèCF=x£¬AE=y£¬Ö±½Óд³öyÓëxµÄº¯Êý¹Øϵʽ¼°×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºµÚ23Õ¡¶¶þ´Îº¯ÊýÓë·´±ÈÀýº¯Êý¡·³£¿¼Ì⼯£¨43£©£º23.6 ·´±ÈÀýº¯Êý£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖª£ºÕý·½ÐÎOABCµÄÃæ»ýΪ9£¬µãOΪ×ø±êÔ­µã£¬µãAÔÚxÖáÉÏ£¬µãCÔÚyÖáÉÏ£¬µãBÔÚº¯Êýy=£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=£¨k£¾0£¬x£¾0£©µÄͼÏóÉϵÄÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬²¢Éè¾ØÐÎOEPFÖкÍÕý·½ÐÎOABC²»Öغϲ¿·ÖµÄÃæ»ýΪS£®
£¨1£©ÇóµãB×ø±êºÍkµÄÖµ£®
£¨2£©µ±S=ʱ£¬ÇóPµÄ×ø±ê£®
£¨3£©Ð´³öS¹ØÓÚmµÄº¯Êý¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º¡¶µÚ1Õ ·´±ÈÀýº¯Êý¡·2010Äêµ¥Ôª²âÆÀ£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖª£ºÕý·½ÐÎOABCµÄÃæ»ýΪ9£¬µãOΪ×ø±êÔ­µã£¬µãAÔÚxÖáÉÏ£¬µãCÔÚyÖáÉÏ£¬µãBÔÚº¯Êýy=£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=£¨k£¾0£¬x£¾0£©µÄͼÏóÉϵÄÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬²¢Éè¾ØÐÎOEPFÖкÍÕý·½ÐÎOABC²»Öغϲ¿·ÖµÄÃæ»ýΪS£®
£¨1£©ÇóµãB×ø±êºÍkµÄÖµ£®
£¨2£©µ±S=ʱ£¬ÇóPµÄ×ø±ê£®
£¨3£©Ð´³öS¹ØÓÚmµÄº¯Êý¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸